Spelling suggestions: "subject:"copper oxide."" "subject:"chopper oxide.""
11 |
Magnetic phase diagram of Ca₂₊xY₂₋xCu₅O₁₀₋[delta] oxygen hole-doping effects /Park, Keeseong, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
12 |
SULFIDIZATION AND FLOTATION OF CHRYSOCOLLA AND BROCHANTITE.Lee, Ling. January 1983 (has links)
No description available.
|
13 |
Copper oxide superconductors.Garcia-Vazquez, Valentin. January 1992 (has links)
The properties of superconducting YBa₂Cu₃O₇₋(δ) thin films have been studied. Films have been prepared by multilayer deposition followed by ex situ furnace annealing. Deposition consists of a combination of dc triode sputtering from metallic targets of Y and Cu and thermal evaporation from a BaF₂ source. Superconducting and structural properties of the films strongly depend on the annealing conditions. Several heat treatment cycles were investigated, as well as different compositions. Best results were obtained for films deposited on (100) SrTiO₃ substrates, exhibiting T(c)(onset) as high as 92 K and zero resistance by 85 K. The second part of this dissertation examines the properties of ceramic Nd₂₋ₓCeₓCuO₄₋(δ) and Nd₁ͺ₈₅Ce₀ͺ₁₅(Cu₁₋(y)Zn(y))O₄₋(δ) bulk samples. Superconducting properties are examined as a function of x and y. Accurate (± 0.001 Å) lattice parameter calculations are performed from experimental x-ray diffraction data. Comparisons with previous zinc-doping studies in the hole superconducting material La₁ͺ₈₅Sr₀ͺ₁₅CuO₄₋(δ) are made. Theoretical implications and the question of electron-hole symmetry in the copper oxide superconductors are also discussed.
|
14 |
Supported copper oxide catalysts for octanal hydrogenation : the influence of water.Govender, Alisa. January 2010 (has links)
Copper oxide supported on alumina (CuO/Al2O3), silica (CuO/SiO2) and chromia
(CuO/Cr2O3) have been synthesized and characterized. These catalysts were
characterized using XRD, SEM, TEM, ICP, BET surface area and pore volume, TPR, TPD,
TGA-DSC and IR. The hydrogenation of octanal using these catalysts was investigated;
however, the primary focus of the project was the influence of water on the reaction and
the catalysts.
The initial study using CuO/Al2O3 showed that the optimum operating conditions for
subsequent catalytic testing was 160 °C and a hydrogen to aldehyde ratio of two. Under
these conditions, a conversion of 99 % and selectivity to octanol of 97 % was achieved.
Further catalytic testing, using CuO/Al2O3 and CuO/Cr2O3, was carried out by introducing
water-spiked feed into the reaction system after steady state was reached using fresh feed.
Based on literature, it was initially expected that the presence of water would cause
catalyst poisoning and subsequently catalyst deactivation. However, contrary to the
expectation, the presence of water did not influence the activity of these two catalysts.
Furthermore, the selectivity to octanol increased to 98.5 % when CuO/Al2O3 was used for
the reaction, whilst a minor change in the selectivity to octanol (0.5 %) was obtained when
CuO/Cr2O3 was used. The interaction of the water with the surface hydroxyls on alumina
is most likely the reason for the increase in the selectivity to octanol when using
CuO/Al2O3.
In contrast to the other two catalysts, the reaction over CuO/SiO2 showed a steady
decrease in both the conversion of octanal and the selectivity to octanol with time-onstream
when using fresh feed. After 55 hours on stream, the conversion reached 22 %,
(from an initial 95 %) whilst the selectivity to octanol reached 89 % (from an initial 98 %).
This decline in the conversion and selectivity to octanol was possibly due in part, to the
low isoelectric point of silica, with mechanical failure being the major contributing factor
to the catalyst’s deactivation. The decrease in the BET surface area and the presence of
smaller particles in the SEM image, confirmed that mechanical failure occurred.
Since steady state was not reached and deactivation occurred, the reaction over CuO/SiO2 was also carried out using water-spiked feed. The conversion of octanal was seen to gradually decrease to 73 % after 55 hours on stream, whilst the selectivity to octanol remained unchanged at 98 % for the duration of the reaction. This showed the beneficial effect of the presence of water by slowing down the decline in catalytic activity and maintaining the selectivity to octanol. The improved selectivity obtained in the presence of water was attributed to its interaction with the silica surface hydroxyls. Since octanal conversion continued to decrease, it indicated that mechanical failure was the primary cause in the loss of catalytic activity.
The used catalysts were characterized using XRD, SEM, EDS composition scanning, TEM, BET surface area and pore volume, TGA-DSC and IR. The catalysts used for the reaction with the fresh feed and the water-spiked feed were characterized and compared. Except for the deactivation of CuO/SiO2, the characterization of these catalysts showed that the presence of water did not negatively impact the make-up of the catalyst. / Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2010.
|
15 |
Nanostructured CU₂O solar cellsHeffernan, Shane January 2015 (has links)
No description available.
|
16 |
Doped quantum antiferromagnetsL??scher, Andreas, Physics, Faculty of Science, UNSW January 2007 (has links)
In this thesis, we study the effects of doping in two-dimensional quantum antiferromagnets. We consider cases where the undoped parent compound is a Mott insulator with long-range antiferromagnetic order and focus on the low-doping situations. The limit of localized impurities is studied in a system consisting of a host magnet and two additional weakly coupled spins. We derive the effective Hamiltonian describing the interaction between these impurities as a function of their distance and show that it exhibits xyz anisotropy, leading to NMR and EPR line broadening. We calculate the magnetization disturbance in the host magnet induced by a single impurity and find that it always enhances Neel order. Relaxing the localization constraint, we investigate the single-hole dynamics of the t-J model on the honeycomb lattice. Using exact diagonalizations, series expansion and the self-consistent Born approximation, we calculate the quasi-particle dispersion, bandwidth and residues and compare our findings with the well-established results for the square lattice. Similar to the latter case, we find an almost flat band along the edges of the magnetic Brillouin zone and well-defined hole pockets around the corners. The most important part of this thesis is devoted to the magnetic properties of lightly doped La2-xSrxCuO4, the simplest and by far most studied cuprate superconductor. Starting from the undoped parent compound, we calculate the spin-wave spectrum and the spin-flop transitions in a uniform magnetic field at zero temperature. We then consider the low-doping regime and derive the effective field theory describing the spin dynamics in insulating La2-xSrxCuO4, x ≤ 0.055, at low temperature. The spin structure resulting from the spiral solution of the extended t-J model, obtained by taking into account the Coulomb trapping of holes by Sr ions, is confined in the copper-oxide planes. Our solution explains why the incommensurate structure is directed along the orthorhombic b axis and allows us to calculate the positions and shapes of the neutron scattering peaks numerically. These results are in perfect agreement with experimental data. We also show that topological defects (spin vortex-antivortex pairs) are an intrinsic property of the spin-glass ground state.
|
17 |
Modification and control of the interface of high temperature cuprate superconductors using self-assembled monolayersMurray, William Reynolds, January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
|
18 |
Microbial electrodes and Cu2O-based photoelectrodes for innovative electricity generation and pollutant degradationQian, Weizhong., 钱伟忠. January 2011 (has links)
Photoelectrochemical cells (PEC) and microbial fuel cells (MFC) are two promising environmental technologies with the purposes of energy production and pollutant degradation. In this study, p-type Cu2O thin film electrodes were synthesized by electrodeposition on the ITO glass. The influences of various electrodeposition conditions, including the deposition potential, temperature, electrolyte pH, substrates and deposition duration on the morphology and the photoelectrochemical properties of the Cu2O films were investigated. The so-called p-type micro-crystal Cu2O thin film photocathodes were synthesized at -0.4 V, 70 °C and pH 10. An innovative composite Cu2O/TiO2 photoelectrode was developed by dip-coating TiO2 on the surface of the Cu2O film. The outer TiO2 layer would help reduce the electron-hole recombination and hence improve the catalyst stability. The photocatalyst was shown to be capable of photocatalytic degradation of model pollutants. Under simulated solar irradiation, methylene blue, acridine orange, and bromocresso brilliant blue G were effectively degraded in the Cu2O-based PEC. The composite Cu2O/TiO2 photoelectrode could further enhance the photodegradation of the dyes.
For the study on MFC with the saline wastewater-inoculated MFCs, an electricity output of 581 mW/m2 could be achieved at a NaCl concentration of 200 mM. Based on the characterization of the bioande using the electrochemical impedance spectroscopy (EIS) technique, the R(QR)(QR) model, instead of the conventional R(QR) model, was found to fit well with the EIS data of the carbon cloth bioanode. The results support the two-interface-based physical model for the description of the bioanode, including an interface on the flat electrode and the other for the porous biofilm matrix. The new model was employed to monitor the biofilm formation and development on the carbon clothe anode during the MFC start-up. In addition, photocatalytic MFC was developed by using the Cu2O film as the photocathode for the MFC. With the simulated solar light illumination, the PMFC open circuit voltage could be increased by 200 mV comparing to the MFC test. Moreover, the cathode material (Cu2O) is much less expensive than Pt used by common MFCs. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
|
19 |
Modification and control of the interface of high temperature cuprate superconductors using self-assembled monolayersMurray, William Reynolds 28 August 2008 (has links)
Not available / text
|
20 |
Fabrication and characterization of epitaxial YBa2Cu3Oy thin films on double-buffered silicon substratesWong, Ho-yi, Eric., 黃灝頤. January 2003 (has links)
published_or_final_version / abstract / toc / Physics / Master / Master of Philosophy
|
Page generated in 0.0428 seconds