• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De nouveaux outils pour calculer avec des inductifs en Coq

Boutillier, Pierre 18 February 2014 (has links) (PDF)
En ajoutant au lambda-calcul des structures de données algébriques, des types dépendants et un système de modules, on obtient un langage de programmation avec peu de primitives mais une très grande expressivité. L'assistant de preuve Coq s'appuie sur un tel langage (le CIC) à la sémantique particulièrement claire. L'utilisateur n'écrit pas directement de programme en CIC car cela est ardu et fastidieux. Coq propose un environnement de programmation qui facilite la tâche en permettant d'écrire des programmes incrémentalement grâce à des constructions de haut niveau plus concises. Typiquement, les types dépendants imposent des contraintes fortes sur les données. Une analyse de cas peut n'avoir à traiter qu'un sous-ensemble des constructeurs d'un type algébrique, les autres étant impossibles par typage. Le type attendu dans chacun des cas varie en fonction du constructeur considéré. L'impossibilité de cas et les transformations de type doivent être explicitement écrites dans les termes de Coq. Pourtant, ce traitement est mécanisable et cette thèse décrit un algorithme pour réaliser cette automatisation. Par ailleurs, il est nécessaire à l'interaction avec l'utilisateur de calculer des programmes du CIC sans faire exploser la taille syntaxique de la forme réduite. Cette thèse présente une machine abstraite conçu dans ce but. Enfin, les points fixes permettent une manipulation aisée des structure de données récursives. En contrepartie, il faut s'assurer que leur exécution termine systématiquement. Cette question sensible fait l'objet du dernier chapitre de cette thèse.
2

Compilation formellement vérifiée de code C de bas-niveau / Formally verified compilation of low-level C code

Wilke, Pierre 09 November 2016 (has links)
Cette thèse présente une extension du compilateur CompCert permettant de fournir des garanties formelles de préservation sémantique à des programmes auxquels CompCert n'en donne pas. CompCert est un compilateur pour le langage C vers différentes architectures qui fournit, en plus d'un exécutable compilé, des garanties formelles concernant le comportement du programme assembleur généré. En particulier, tout programme C ayant une sémantique définie selon le standard C est compilé en un programme assembleur équivalent, c'est-à-dire qui a la même sémantique. En revanche, ce théorème n'assure aucune garantie lorsque le programme source n'a pas de sémantique définie : on parle en C de comportement indéfini. Toutefois, des programmes C issus de réels projets largement utilisés contiennent des comportements indéfinis. Cette thèse détaille dans un premier temps un certain nombre d'exemples de programmes C qui déclenchent des comportements indéfinis. Nous argumentons que ces programmes devraient tout de même bénéficier du théorème de préservation sémantique de CompCert, d'abord parce qu'ils apparaissent dans de vrais projets et parce que leur utilisation des comportements indéfinis semble légitime. Dans ce but, nous proposons d'abord un modèle mémoire pour CompCert qui définit l'arithmétique arbitraire de pointeurs et la manipulation de données non initialisées, à l'aide d'un formalisme de valeurs symboliques qui capturent la sémantique d'opérations non définies dans le standard. Nous adaptons l'intégralité du modèle mémoire de CompCert avec ces valeurs symboliques, puis nous adaptons les sémantiques formelles de chacun des langages intermédiaires de CompCert. Nous montrons que ces sémantiques symboliques sont un raffinement des sémantiques existantes dans CompCert, et nous montrons par ailleurs que ces sémantiques capturent effectivement le comportement des programmes sus-cités. Enfin, afin d'obtenir des garanties similaires à celles que CompCert fournit, nous devons adapter les preuves de préservation sémantique à notre nouveau modèle. Pour ce faire, nous généralisons d'importantes techniques de preuves comme les injections mémoire, ce qui nous permet de transporter les preuves de CompCert sur nos nouvelles sémantiques. Nous obtenons ainsi un théorème de préservation sémantique qui traite plus de programmes C. / This thesis presents an extension of the CompCert compiler that aims at providing formal guarantees about the compilation of more programs than CompCert does. The CompCert compiler compiles C code into assembly code for various architectures and provides formal guarantees about the behaviour of the compiled assembly program. It states that whenever the C program has a defined semantics, the generated assembly program behaves similarly. However, the theorem does not provide any guarantee when the source program has undefined semantics, or, in C parlance, when it exhibits undefined behaviour, even though those behaviours actually happen in real-world code. This thesis exhibits a number of C idioms, that occur in real-life code and whose behaviour is undefined according to the C standard. Because they happen in real programs, our goal is to enhance the CompCert verified compiler so that it also provides formal guarantees for those programs. To that end, we propose a memory model for CompCert that makes pointer arithmetic and uninitialised data manipulation defined, introducing a notion of symbolic values that capture the meaning of otherwise undefined idioms. We adapt the whole memory model of CompCert with this new formalism and adapt the semantics of all the intermediate languages. We prove that our enhanced semantics subsumes that of CompCert. Moreover, we show that these symbolic semantics capture the behaviour of the previously undefined C idioms. The proof of semantic preservation from CompCert needs to be reworked to cope with our model. We therefore generalize important proof techniques such as memory injections, which enable us to port the whole proof of CompCert to our new memory model, therefore providing formal guarantees for more programs.
3

A formalization of elliptic curves for cryptography / Une formalisation des courbes elliptiques pour la cryptographie

Bartzia, Evmorfia-Iro 15 February 2017 (has links)
Le sujet de ma thèse s’inscrit dans le domaine des preuves formelleset de la vérification des algorithmescryptographiques. L’implémentation des algorithmes cryptographiquesest souvent une tâche assez compliquée, parce qu’ils sont optimiséspour être efficaces et sûrs en même temps. Par conséquent, il n’estpas toujours évident qu’un programme cryptographique en tant quefonction, corresponde exactement à l’algorithme mathématique,c’est-à-dire que le programme soit correct. Les erreurs dans lesprogrammes cryptographiques peuvent mettre en danger la sécurité desystèmes cryptographiques entiers et donc, des preuves de correctionsont souvent nécessaires. Les systèmes formels et les assistants depreuves comme Coq et Isabelle-HOL sont utilisés pour développer despreuves de correction des programmes. Les courbes elliptiques sontlargement utilisées en cryptographie surtout en tant que groupecryptographique très efficace. Pour le développement des preuvesformelles des algorithmes utilisant les courbes elliptiques, unethéorie formelle de celles-ci est nécessaire. Dans ce contexte, nousavons développé une théorie formelle des courbes elliptiques enutilisant l’assistant de preuves Coq. Cette théorie est par la suiteutilisée pour prouver la correction des algorithmes de multiplicationscalaire sur le groupe des points d’une courbe elliptique.Plus précisément, mes travaux de thèse peuvent être divisées en deuxparties principales. La première concerne le développement de lathéorie des courbes elliptiques en utilisant l'assistant des preuvesCoq. Notre développement de plus de 15000 lignes de code Coqcomprend la formalisation des courbes elliptiques données par uneéquation de Weierstrass, la théorie des corps des fonctionsrationnelles sur une courbe, la théorie des groupes libres et desdiviseurs des fonctions rationnelles sur une courbe. Notre résultatprincipal est la formalisation du théorème de Picard; une conséquencedirecte de ce théorème est l’associativité de l’opération du groupedes points d’une courbe elliptique qui est un résultat non trivial àprouver. La seconde partie de ma thèse concerne la vérification del'algorithme GLV pour effectuer la multiplication scalaire sur descourbes elliptiques. Pour ce développement, nous avons vérifier troisalgorithmes indépendants: la multiexponentiation dans un groupe, ladécomposition du scalaire et le calcul des endomorphismes sur unecourbe elliptique. Nous avons également développé une formalisationdu plan projectif et des courbes en coordonnées projectives et nousavons prouvé que les deux représentations (affine et projective) sontisomorphes.Notre travail est à la fois une première approche à la formalisationde la géométrie algébrique élémentaire qui est intégré dans lesbibliothèques de Ssreflect mais qui sert aussi à la certification devéritables programmes cryptographiques. / This thesis is in the domain of formalization of mathematics and ofverification of cryptographic algorithms. The implementation ofcryptographic algorithms is often a complicated task becausecryptographic programs are optimized in order to satisfy bothefficiency and security criteria. As a result it is not alwaysobvious that a cryptographique program actually corresponds to themathematical algorithm, i.e. that the program is correct. Errors incryprtographic programs may be disastrous for the security of anentire cryptosystem, hence certification of their correctness isrequired. Formal systems and proof assistants such as Coq andIsabelle-HOL are often used to provide guarantees and proofs thatcryptographic programs are correct. Elliptic curves are widely usedin cryptography, mainly as efficient groups for asymmetriccryptography. To develop formal proofs of correctness forelliptic-curve schemes, formal theory of elliptic curves is needed.Our motivation in this thesis is to formalize elliptic curve theoryusing the Coq proof assistant, which enables formal analysis ofelliptic-curve schemes and algorithms. For this purpose, we used theSsreflect extension and the mathematical libraries developed by theMathematical Components team during the formalization of the FourColor Theorem. Our central result is a formal proof of Picard’stheorem for elliptic curves: there exists an isomorphism between thePicard group of divisor classes and the group of points of an ellipticcurve. An important immediate consequence of this proposition is theassociativity of the elliptic curve group operation. Furthermore, wepresent a formal proof of correctness for the GLV algorithm for scalarmultiplication on elliptic curve groups. The GLV algorithm exploitsproperties of the elliptic curve group in order to acceleratecomputation. It is composed of three independent algorithms:multiexponentiation on a generic group, decomposition of the scalarand computing endomorphisms on algebraic curves. This developmentincludes theory about endomorphisms on elliptic curves and is morethan 5000 lines of code. An application of our formalization is alsopresented.

Page generated in 0.0555 seconds