• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation numérique par la méthode SPH de fuites de fluide consécutives à la déchirure d'un réservoir sous impact

Caleyron, Fabien 28 October 2011 (has links) (PDF)
Le récent développement des menaces terroristes renforce l'effort de recherche du CEA et d'EDF pour la protection des citoyens et des installations. De nombreux scénarios doivent être envisagés comme, par exemple, la chute d'un avion de ligne sur une structure de génie civil. La dispersion du carburant dans la structure, son embrasement sous forme de boule de feu et les effets thermiques associés sont des éléments essentiels du problème. L'utilisation de modèles numériques est indispensable car des expériences seraient difficiles à mettre en œuvre, coûteuses et dangereuses. Le problème type que l'on cherche à modéliser est donc l'impact d'un réservoir rempli de fluide, sa déchirure et la dispersion de son contenu. C'est un problème complexe qui fait intervenir une structure mince avec un comportement fortement non-linéaire allant jusqu'à rupture, un fluide dont la surface libre peut varier drastiquement et des interactions fluide-structure non permanentes. L'utilisation des méthodes numériques traditionnelles pour résoudre ce problème semble difficile, essentiellement parce qu'elles reposent sur un maillage. Cela complique la gestion des grandes déformations, la modélisation des interfaces variables et l'introduction de discontinuités telles que les fissures. Afin de s'affranchir de ces problèmes, la méthode sans maillage SPH (\og Smoothed Particle Hydrodynamics \fg) a été utilisée pour modéliser le fluide et la structure. Ce travail, inscrit dans la continuité de recherches précédentes, a permis d'étendre un modèle de coque SPH à la modélisation des ruptures. Un algorithme de gestion des interactions fluide-structure a également été adapté à la topologie particulière des coques. Afin de réduire les coûts de calcul importants liés à ce modèle, un couplage avec la méthode des éléments finis a également été élaboré. Il permet de n'utiliser les SPH que dans les zones d'intérêt où la rupture est attendue. Finalement, des essais réalisés par l'ONERA sont étudiés pour valider la méthode. Ces travaux ont permis de doter le logiciel de dynamique rapide Europlexus d'un outil original et efficace pour la simulation des impacts de structures minces en interaction avec un fluide. Un calcul démonstratif montre enfin la pertinence de l'approche et sa mise en œuvre dans un cadre industriel.
2

Simulation numérique par la méthode SPH de fuites de fluide consécutives à la déchirure d'un réservoir sous impact / Numerical simulation with the SPH method of fluid leackage resulting from the rupture of a tank under impact

Caleyron, Fabien 28 October 2011 (has links)
Le récent développement des menaces terroristes renforce l'effort de recherche du CEA et d'EDF pour la protection des citoyens et des installations. De nombreux scénarios doivent être envisagés comme, par exemple, la chute d'un avion de ligne sur une structure de génie civil. La dispersion du carburant dans la structure, son embrasement sous forme de boule de feu et les effets thermiques associés sont des éléments essentiels du problème. L'utilisation de modèles numériques est indispensable car des expériences seraient difficiles à mettre en œuvre, coûteuses et dangereuses. Le problème type que l'on cherche à modéliser est donc l'impact d'un réservoir rempli de fluide, sa déchirure et la dispersion de son contenu. C'est un problème complexe qui fait intervenir une structure mince avec un comportement fortement non-linéaire allant jusqu'à rupture, un fluide dont la surface libre peut varier drastiquement et des interactions fluide-structure non permanentes. L'utilisation des méthodes numériques traditionnelles pour résoudre ce problème semble difficile, essentiellement parce qu'elles reposent sur un maillage. Cela complique la gestion des grandes déformations, la modélisation des interfaces variables et l'introduction de discontinuités telles que les fissures. Afin de s'affranchir de ces problèmes, la méthode sans maillage SPH (\og Smoothed Particle Hydrodynamics \fg) a été utilisée pour modéliser le fluide et la structure. Ce travail, inscrit dans la continuité de recherches précédentes, a permis d'étendre un modèle de coque SPH à la modélisation des ruptures. Un algorithme de gestion des interactions fluide-structure a également été adapté à la topologie particulière des coques. Afin de réduire les coûts de calcul importants liés à ce modèle, un couplage avec la méthode des éléments finis a également été élaboré. Il permet de n'utiliser les SPH que dans les zones d'intérêt où la rupture est attendue. Finalement, des essais réalisés par l'ONERA sont étudiés pour valider la méthode. Ces travaux ont permis de doter le logiciel de dynamique rapide Europlexus d'un outil original et efficace pour la simulation des impacts de structures minces en interaction avec un fluide. Un calcul démonstratif montre enfin la pertinence de l'approche et sa mise en œuvre dans un cadre industriel. / The recent development of terrorist threats increases the research effort of the french Atomic Energy Commission (CEA) and the French Electricity company (EDF) for the protection of citizens and facilities. Many scenarios should be considered as, for example, the fall of an airliner on a civil engineering structure. The dispersion of fuel in the structure, the formation of a fireball and associated thermal effects are essential elements of the problem. The use of numerical models is essential because experiences would be difficult to organize, costly and dangerous. The typical problem that we want to model is the impact of a tank filled with fluid, its rupture and the dispersion of its contents. It is a complex problem which involves a thin structure with a highly non-linear behavior up to rupture, a fluid with a free surface that can vary drastically and non permanent fluid-structure interactions. The use of traditional numerical methods to solve this kind of problems is difficult, mainly because they rely on a mesh. This complicates the management of large deformations, the modeling of moving interfaces and the introduction of discontinuities such as cracks. To overcome these problems, the meshfree method SPH (Smoothed Particle Hydrodynamics) was used to model both the fluid and the structure. This work, which is a continuation of previous research, has extended a model of SPH shell to the modeling of ruptures. An algorithm for managing fluid-structure interactions has also been adapted to the particular topology of shells. To reduce the important computational costs associated with this model, a coupling with the finite element method was also developed. It allows the use of SPH in areas of interest where the rupture is expected. Finally, tests performed by the french Aerospace Lab (ONERA) are studied to validate the method. This work helped to provide fast dynamic software Europlexus an original and effective tool for the simulation of the impact of thin structures interacting with fluid. A demonstrative calculation finally shows the relevance of the approach and its use within an industrial framework.
3

A new shell formulation using complete 3D constitutive laws : Applications to sheet metal forming simulations / Nouvelles formulations « coque » a loi de comportement 3D : Applications à la simulation de mise en forme de tôles

Sansalone, Mickaël 09 March 2011 (has links)
Dans le domaine de la mise en forme industrielle, des outils de simulation comme le logiciel Pam-stamp 2G permettent entre autres le prototypage et l’optimisation numérique des produits, réduisant ainsi les coûts expérimentaux de mise au point. Les éléments finis de type coques en hypothèse d’état plan de contrainte demeurent les plus utilisés car ils permettent une prise en compte réaliste des déformations majeures de membrane et de flexion. Cependant, de par leur définition, la contrainte normale pouvant apparaitre en cas de compression du flan dans la direction de l’épaisseur ou encore de flexion extrême sur petit rayon est systématiquement omise. De plus, Il existe de nouveaux procédés de mise en forme de tôle, comme le pliage/sertissage/emboutissage avec laminage et/ou écrasement ainsi que l’hydroformage, qui ne peuvent pas être traités avec ces formulations d’éléments coques classiques. L’utilisation de couches d’éléments volumiques est souvent considérée comme une alternative non convenable aux simulations de ces procédés. Outre le très haut coût CPU, s’ajoutent le rendu parfois non réaliste ainsi que la complexité liée à la découpe du maillage du flan. Récemment, des éléments de type “solid-shell” ont été mis à contribution mais requièrent des améliorations quant à leurs lois de comportements. L’objectif d’ESI group consiste en l’élaboration, l’évaluation, l’implémentation et la validation industrielle d’une nouvelle formulation d’élément fini. Cet élément devra permettre la gestion d’une éventuelle variation d’épaisseur avec prise en compte réaliste de la contrainte normale, tout en assurant des résultats dignes de ceux d’une coque conventionnelle en flexion. Une nouvelle formulation de type coque 3D est ainsi d’abord proposée. Des éléments coques triangulaires et quadrangulaire en théorie de Mindlin et de Kirchhoff sont utilisés. Cette approche est d’abord développée dans un solveur quasi-statique implicite de l’INSA de Lyon pour validation numérique sur cas académiques linéaires et non linéaires de référence. Une validation expérimentale sur opération de pliage dépliage est également réalisée. Aux vues des non linéarités dues au contact avec frottement, grandes déformations et grands déplacements posant des soucis de convergence en implicite au cours de la simulation d’opérations de mise en forme, la méthode est ensuite développée dans le solveur explicite de l’INSA de Lyon. Seuls les éléments en théorie de Mindlin sont considérés. Les particularités liées à cette méthode de résolution dynamique comme la matrice de masse, le pas de temps critique et l’optimisation du CPU sont traitées. Une nouvelle méthode de contact dédiée aux opérations de mise en forme impliquant du laminage et/ou de l’amincissement est également proposée. Elle permet une transition automatique d’éléments standards vers des éléments coque "3D", palliant ainsi le remaillage. Des essais de mise en forme en U avec ou sans laminage apportent une validation expérimentale concernant le retour élastique. Une fois validées, les techniques et formulations les plus abouties sont implémentées dans le code industriel dédié à la mise en forme Pam-stamp 2G v2011. Après une vérification sur tests de référence, des applications sont enfin menées sur cas critiques inspirés de procédés industriels complexes et nécessitant essentiellement une loi de comportement 3D. / In the sheet metal forming industry, shell elements in plane-stress assumption are employed, as they perform quite well in simulating the major membrane and flexural large deformations involved. However, the normal stress, caused by compression along thickness direction of the blank or local high bending over very small radii, is hence systematically omitted. Besides, when it comes to unusual and challenging processes such as hydro-forming, thinning/thickening, forming with ironing, bottoming and so on, makeshift solutions such as layers of 3D solid hexahedrons or even recent “solid-shell” elements are no longer appropriate. An innovative 3D finite element formulation methodology overcoming the overcoming the plane-stress definition of classification shell elements, while keeping their very good bending assets is first proposed in this work. The method basically consists in adding a central node endowed with two degrees of freedom at the element center. These two extra translations normal to the element mid-plane give a new quadratic displacement field along the shell normal direction. A derivative normal strain can hence be expressed and a linear normal stress comes via a full 3D constructive law. A very pioneering contact technique, dedicated to forming processes with ironing, thinning/bottoming operations and allowing a usual-to-enhanced automatic element switch is developed as well. Once widely assessed, most interesting achievements are implemented in the dynamic explicit industrial code Pam-stamp 2 G v2011 and evaluated over critical industrial forming processes that require essentially a full 3D strain-stress behavior.

Page generated in 0.0737 seconds