• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des écoulements fluide multiphasiques avec une approche SPH / Modeling of multiphase fluid flows with Smoothed Particle Hydrodynamics approach

Krimi, Abdelkader 24 January 2018 (has links)
La méthode Smoothed Particle Hydrodynamics (SPH) est une méthode lagrangienne, sans maillage développée initialement pour des simulations de phénomènes astrophysiques. Depuis, elle a connu de nombreuses applications, notamment pour la simulation des écoulements des fluides. Contrairement aux méthodes utilisant un maillage, la méthode SPH peut gérer de manière naturelle et sans traitement spécifique les simulations des écoulements à sur- face libre et multiphasiques avec interface subissant de grandes déformations. Dans cette thèse, une modélisation SPH des écoulements des fluides multiphasiques a été réalisée en tenant compte de différentes complexités (écoulements à surface libre et multiphasiques interfacials) et de natures d'écoulement (si- mulation des fluides, des sols et les deux en interactions). Un modèle SPH faiblement compressible (WCSPH) a été proposé pour simuler les écoulements des fluides multiphasiques avec interface comprenant plus de deux phases de fluide. Ce modèle inclut le développement d’une nouvelle formulation de force de tension de surface en utilisant un opérateur SPH consistant de premier ordre. Une modification de condition généralisée aux parois solides a été apportée pour qu’elle soit appliquée sur les écoulements des fluides multiphasiques avec des rapports de densité et de viscosité élevés. Une nouvelle loi de comportement dépendant de la pression nommée RBMC-αμ ( Regularized Bingham Mohr Coulomb où αμ est un paramètre libre) a également été développée. Cette loi peut simuler les fluides (Newtonien, Binghamien), les sols (cohésif, frictionnel) et les deux en interactions. La loi précédente étant sensible à la pression, une extension du terme diffusif δ-SPH a été faite pour le cas des écoulements des fluides multiphasiques afin de réduire les oscillations de pression à haute fréquence qui sont dues à l’utilisation d’une équation d’état. La validation et l’application des modèles développés dans cette thèse sont montrées à travers plusieurs cas tests de difficulté croissante. / Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed initially to simulate astrophysical phenomena, and since it has been known for a large number of applications, especially for fluid flow simulations. Contrary to the grid-based method, the SPH method can handle free surface and interfacial fluid flow simulation including large deformations naturally and without the need for any specific treatment. In this thesis a SPH modeling of multiphase fluid flows has been achieved with consideration of different complexities ( free surface and interfacial fluid flows) and natures (simulation of fluids, soil and both in interactions). A consistent weakly compressible SPH model (WCSPH) has been proposed to simulate interfacial multiphase fluid flows with more than two fluid phases. This model includes a new expression of the surface tension force using a first order consistency SPH operator. A modification to the well known generalized wall boundary condition have been brought in order to be applied to multiphase fluid flow with large density and viscosity ratios. A new pressure-based constitutive law named RBMC-αμ (Regularized Bingham Mohr Coulomb with αμ is free parameter) has been developed in this thesis. This model can simulate fluids (Newtonian, Binghamton), soils (cohesive, frictional) and both in interactions. Because the previous model is pressure sensitive, an extension of δ-SPH diffusive term has been proposed for multiphase fluid flows to overcome the hight frequency pressure oscillations due to the determination of pressure from an equation of state. The validation and application of the developed models have been shown in this thesis through several test-cases of increasing difficulty.
2

Bezsíťové metody ve výpočetní dynamice tekutin / Meshless methods for computational fluid dynamics

Niedoba, Pavel January 2012 (has links)
The thesis deals with meshfree methods, especially the SPH method. It is focused on the question of convergence near the boundary of the problem domain and its following solution in the form of using the so-called ghost particles as a boundary condition. There is also presented a suitable setting of parameters for a shock tube 2D problem based on many tests and software modifications.
3

Escoamento deslizante sobre turbilhões em descarregadores em degraus de largura constante e convergentes, usando o método Hidrodinâmica Suavizada de Partículas / Skimming flow over stepped spillways with non-converging and converging sidewalls using Smoothed Particles Hydrodynamics Method

Juliana Dorn Nóbrega 23 November 2018 (has links)
O método Hidrodinâmica Suavizada de Partículas (em inglês: Smoothed Particle Hydrodynamics - SPH) foi utilizado para o desenvolvimento de um estudo numérico envolvendo descarregadores lisos e descarregadores em degraus (considerando escoamento deslizante sobre turbilhões), com paredes laterais paralelas e paredes convergentes, usando o software DualSPHysics. Muitas vezes é conveniente utilizar a construção de descarregadores com maior largura na crista, e menor largura do descarregador, para adaptação das limitações físicas locais. O estreitamento do descarregador de forma gradual até atingir a largura da seção de jusante é feito por meio de paredes laterais convergentes, que por sua vez induzem à formação de ondas estacionárias laterais, e consequentemente aumento da altura do escoamento junto às paredes. Existem poucos estudos na literatura sobre esse tema, justificando o estudo numérico desenvolvido neste trabalho. O modelo numérico foi desenvolvido com base em um modelo físico do Laboratório de Hidráulica e Recursos Hídricos do Instituto Superior Técnico, Portugal, sendo os resultados experimentais obtidos em estudos anteriores. A instalação experimental é composta por um descarregador com declividade de fundo de 26,6º, e ângulo das paredes de 0º; 9,9º e 19,3º em relação ao plano vertical. As simulações foram realizadas em duas ou três dimensões, conforme a condição de largura constante ou convergente. Os resultados foram comparados com dados experimentais em termos de alturas do escoamento na parede e no eixo do descarregador, perfis de velocidade na região não-aerada do escoamento, e largura da onda estacionária lateral. Para as simulações tridimensionais, também foram elaborados gráficos de isolinhas para a altura do escoamento, podendo-se observar a extensão das ondas estacionárias laterais conforme a condição de superfície lisa ou em degraus, e a elevação de água junto às paredes. Em geral, houve boa aproximação entre dados numéricos e experimentais, verificando-se a aplicabilidade do método SPH para simular o escoamento deslizante sobre turbilhões em estruturas em degraus, ou estruturas convencionais de paramento liso. / A numerical study using the Smoothed Particle Hydrodynamics method (SPH) was developed for smooth and stepped spillways (for skimming flow regime), with converging and non-converging sidewalls, using the software DualSPHysics. In numerous situations, it is convenient to built spillways with longer width at the crest and narrower width at the downstream end of the spillway, depending on the site constrains. The gradual narrowing of the spillway width is usually made through converging sidewalls, which induce the formation of shockwaves, leading to higher flow depths along the sidewalls. Few studies in the literature were carried out in this research topic to date, justifying the numerical study developed in this project. The numerical model was based on a physical model assembled at the Hydraulic and Water Resources Laboratory of the Instituto Superior Técnico, Portugal, using experimental data obtained in previous studies. The experimental setup was composed by a spillway with slope of 26.6º, and angles of converging sidewalls of 0º, 9.9º, and 19.3º in relation to the vertical plane. Two-dimensional or three-dimensional simulations were carried out according to the condition of constant width or converging walls. The results were compared with experimental data, related to the flow depths at the centerline and sidewall of the spillway, the velocity profiles on the non-aerated region, and the lateral standing wave width. Regarding the three-dimensional simulations, contours of the flow depth were also represented, to visualize the extent and height of the sidewall shockwaves, according to the smoothed or stepped face. In general, a good agreement was obtained between numerical and experimental results, which confirms the ability of the SHP method to simulate the skimming flow over stepped spillways, or the flow on more conventional, smooth spillway chutes.
4

Escoamento deslizante sobre turbilhões em descarregadores em degraus de largura constante e convergentes, usando o método Hidrodinâmica Suavizada de Partículas / Skimming flow over stepped spillways with non-converging and converging sidewalls using Smoothed Particles Hydrodynamics Method

Nóbrega, Juliana Dorn 23 November 2018 (has links)
O método Hidrodinâmica Suavizada de Partículas (em inglês: Smoothed Particle Hydrodynamics - SPH) foi utilizado para o desenvolvimento de um estudo numérico envolvendo descarregadores lisos e descarregadores em degraus (considerando escoamento deslizante sobre turbilhões), com paredes laterais paralelas e paredes convergentes, usando o software DualSPHysics. Muitas vezes é conveniente utilizar a construção de descarregadores com maior largura na crista, e menor largura do descarregador, para adaptação das limitações físicas locais. O estreitamento do descarregador de forma gradual até atingir a largura da seção de jusante é feito por meio de paredes laterais convergentes, que por sua vez induzem à formação de ondas estacionárias laterais, e consequentemente aumento da altura do escoamento junto às paredes. Existem poucos estudos na literatura sobre esse tema, justificando o estudo numérico desenvolvido neste trabalho. O modelo numérico foi desenvolvido com base em um modelo físico do Laboratório de Hidráulica e Recursos Hídricos do Instituto Superior Técnico, Portugal, sendo os resultados experimentais obtidos em estudos anteriores. A instalação experimental é composta por um descarregador com declividade de fundo de 26,6º, e ângulo das paredes de 0º; 9,9º e 19,3º em relação ao plano vertical. As simulações foram realizadas em duas ou três dimensões, conforme a condição de largura constante ou convergente. Os resultados foram comparados com dados experimentais em termos de alturas do escoamento na parede e no eixo do descarregador, perfis de velocidade na região não-aerada do escoamento, e largura da onda estacionária lateral. Para as simulações tridimensionais, também foram elaborados gráficos de isolinhas para a altura do escoamento, podendo-se observar a extensão das ondas estacionárias laterais conforme a condição de superfície lisa ou em degraus, e a elevação de água junto às paredes. Em geral, houve boa aproximação entre dados numéricos e experimentais, verificando-se a aplicabilidade do método SPH para simular o escoamento deslizante sobre turbilhões em estruturas em degraus, ou estruturas convencionais de paramento liso. / A numerical study using the Smoothed Particle Hydrodynamics method (SPH) was developed for smooth and stepped spillways (for skimming flow regime), with converging and non-converging sidewalls, using the software DualSPHysics. In numerous situations, it is convenient to built spillways with longer width at the crest and narrower width at the downstream end of the spillway, depending on the site constrains. The gradual narrowing of the spillway width is usually made through converging sidewalls, which induce the formation of shockwaves, leading to higher flow depths along the sidewalls. Few studies in the literature were carried out in this research topic to date, justifying the numerical study developed in this project. The numerical model was based on a physical model assembled at the Hydraulic and Water Resources Laboratory of the Instituto Superior Técnico, Portugal, using experimental data obtained in previous studies. The experimental setup was composed by a spillway with slope of 26.6º, and angles of converging sidewalls of 0º, 9.9º, and 19.3º in relation to the vertical plane. Two-dimensional or three-dimensional simulations were carried out according to the condition of constant width or converging walls. The results were compared with experimental data, related to the flow depths at the centerline and sidewall of the spillway, the velocity profiles on the non-aerated region, and the lateral standing wave width. Regarding the three-dimensional simulations, contours of the flow depth were also represented, to visualize the extent and height of the sidewall shockwaves, according to the smoothed or stepped face. In general, a good agreement was obtained between numerical and experimental results, which confirms the ability of the SHP method to simulate the skimming flow over stepped spillways, or the flow on more conventional, smooth spillway chutes.
5

Simulation numérique par la méthode SPH de fuites de fluide consécutives à la déchirure d'un réservoir sous impact / Numerical simulation with the SPH method of fluid leackage resulting from the rupture of a tank under impact

Caleyron, Fabien 28 October 2011 (has links)
Le récent développement des menaces terroristes renforce l'effort de recherche du CEA et d'EDF pour la protection des citoyens et des installations. De nombreux scénarios doivent être envisagés comme, par exemple, la chute d'un avion de ligne sur une structure de génie civil. La dispersion du carburant dans la structure, son embrasement sous forme de boule de feu et les effets thermiques associés sont des éléments essentiels du problème. L'utilisation de modèles numériques est indispensable car des expériences seraient difficiles à mettre en œuvre, coûteuses et dangereuses. Le problème type que l'on cherche à modéliser est donc l'impact d'un réservoir rempli de fluide, sa déchirure et la dispersion de son contenu. C'est un problème complexe qui fait intervenir une structure mince avec un comportement fortement non-linéaire allant jusqu'à rupture, un fluide dont la surface libre peut varier drastiquement et des interactions fluide-structure non permanentes. L'utilisation des méthodes numériques traditionnelles pour résoudre ce problème semble difficile, essentiellement parce qu'elles reposent sur un maillage. Cela complique la gestion des grandes déformations, la modélisation des interfaces variables et l'introduction de discontinuités telles que les fissures. Afin de s'affranchir de ces problèmes, la méthode sans maillage SPH (\og Smoothed Particle Hydrodynamics \fg) a été utilisée pour modéliser le fluide et la structure. Ce travail, inscrit dans la continuité de recherches précédentes, a permis d'étendre un modèle de coque SPH à la modélisation des ruptures. Un algorithme de gestion des interactions fluide-structure a également été adapté à la topologie particulière des coques. Afin de réduire les coûts de calcul importants liés à ce modèle, un couplage avec la méthode des éléments finis a également été élaboré. Il permet de n'utiliser les SPH que dans les zones d'intérêt où la rupture est attendue. Finalement, des essais réalisés par l'ONERA sont étudiés pour valider la méthode. Ces travaux ont permis de doter le logiciel de dynamique rapide Europlexus d'un outil original et efficace pour la simulation des impacts de structures minces en interaction avec un fluide. Un calcul démonstratif montre enfin la pertinence de l'approche et sa mise en œuvre dans un cadre industriel. / The recent development of terrorist threats increases the research effort of the french Atomic Energy Commission (CEA) and the French Electricity company (EDF) for the protection of citizens and facilities. Many scenarios should be considered as, for example, the fall of an airliner on a civil engineering structure. The dispersion of fuel in the structure, the formation of a fireball and associated thermal effects are essential elements of the problem. The use of numerical models is essential because experiences would be difficult to organize, costly and dangerous. The typical problem that we want to model is the impact of a tank filled with fluid, its rupture and the dispersion of its contents. It is a complex problem which involves a thin structure with a highly non-linear behavior up to rupture, a fluid with a free surface that can vary drastically and non permanent fluid-structure interactions. The use of traditional numerical methods to solve this kind of problems is difficult, mainly because they rely on a mesh. This complicates the management of large deformations, the modeling of moving interfaces and the introduction of discontinuities such as cracks. To overcome these problems, the meshfree method SPH (Smoothed Particle Hydrodynamics) was used to model both the fluid and the structure. This work, which is a continuation of previous research, has extended a model of SPH shell to the modeling of ruptures. An algorithm for managing fluid-structure interactions has also been adapted to the particular topology of shells. To reduce the important computational costs associated with this model, a coupling with the finite element method was also developed. It allows the use of SPH in areas of interest where the rupture is expected. Finally, tests performed by the french Aerospace Lab (ONERA) are studied to validate the method. This work helped to provide fast dynamic software Europlexus an original and effective tool for the simulation of the impact of thin structures interacting with fluid. A demonstrative calculation finally shows the relevance of the approach and its use within an industrial framework.
6

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

Li, Zhe 14 November 2013 (has links)
L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d’approches de simulation numérique peuvent être utilisés pour étudier les problèmes d’IFS afin d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d’ ´ Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l’interface entre le fluide et la structure d’une manière naturelle. Une stratégie de couplage conservant l’énergie est proposée pour les problèmes d’IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l’interface, la méthode proposée peut assurer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface. L’énergie de l’interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l’ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d’abord appliquée `a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d’ondes de choc au travers de l’interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d’onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d’autres méthodes de couplage. / The Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches.
7

Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure field

Mayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.
8

Simulação de escoamentos incompressíveis empregando o método Smoothed Particle Hydrodynamics utilizando algoritmos iterativos na determinação do campo de pressões / Simulation of incompressible flows employing the Smoothed Particle Hydrodynamics method using iterative methods to determine the pressure field

Mayksoel Medeiros de Freitas 25 March 2013 (has links)
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas. / In this work, we have developed a numerical simulator (C/C++) to solve incompressible Newtonian fluid flows, based on the meshfree Lagrangian Smoothed Particle Hydrodynamics (SPH) Method. Traditionally, two methods have been used to determine the pressure field to ensure the incompressibility of the fluid flow. The first is calledWeak Compressible Smoothed Particle Hydrodynamics (WCSPH) Method, in which an equation of state for a quasi-incompressible fluid is used to determine the pressure field. The second employs the Projection Method and the pressure field is obtained by solving a Poissons equation. In the study developed here, we have proposed three iterative methods based on the Projection Method to calculate the pressure field, Incompressible Smoothed Particle Hydrodynamics (ISPH) Method. In order to validate the iterative methods and the computational code we have simulated two one-dimensional problems: the Couette flow between two infinite parallel flat plates and the Poiseuille flow in a infinite duct, and periodic boundary conditions and ghost particles have been used. A two-dimensional problem, the lid-driven cavity flow, has also been considered. In solving this problem we have used a periodic repositioning technique and ghost particles.

Page generated in 0.0492 seconds