• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse d'une méthode de couplage entre un fluide compressible et une structure déformable

Monasse, Laurent 10 October 2011 (has links) (PDF)
Dans cette thèse, nous avons étudié la simulation numérique des phénomènes d'interaction fluide-structure entre un fluide compressible et une structure déformable. En particulier, nous nous sommes intéressés au couplage par une approche partitionnée entre une méthode de Volumes Finis pour résoudre les équations de la mécanique des fl uides compressibles et une méthode d'Éléments discrets pour le solide, capable de prendre en compte la fissuration. La revue des méthodes existantes de domaines fictifs ainsi que des algorithmes partitionnés couramment utilisés pour le couplage conduit à choisir une méthode de frontières immergées conservative et un schéma de couplage explicite. Il est établi que la méthode d'Éléments Discrets utilisée permet de retrouver le comportement macroscopique du matériau et que le schéma symplectique employé assure la préservation de l'énergie du solide. Puis nous avons développé un algorithme de couplage explicite entre un fluide compressible non-visqueux et un solide indéformable. Nous avons montré des propriétés de conservation exacte de masse, de quantité de mouvement et d'énergie du système ainsi que de consistance du schéma de couplage. Cet algorithme a été étendu au couplage avec un solide déformable, sous la forme d'un schéma semi-implicite. Cette méthode a été appliquée à l'étude de problèmes d'écoulements non-visqueux autour de structures mobiles : les comparaisons avec des résultats numériques et expérimentaux existants démontrent la très bonne précision de notre méthode.
2

Couplage aéro-thermo-mécanique pour la prédiction de la déformation d'une plaque soumise à une flamme

Baqué, Bénédicte 25 April 2012 (has links) (PDF)
Cette thèse consiste à mettre en place un couplage externe aéro-thermo-mécanique, sur la base d'un schéma partitionné, entre les codes de recherche CEDRE (mécanique des fluides, volumes finis) et Z-set (modules indépendants pour la mécanique des structures et la thermique du solide, éléments finis). Les résultats numériques sont confrontés à ceux de l'expérience (une campagne de mesures a été menée dans le cadre de cette étude), dans le cas d'un problème complexe lié au domaine de l'aérospatial : l'interaction flamme-paroi. Ce phénomène est piloté par la thermique, à travers le flux de chaleur pariétal généré par la flamme. A cause de la disparité des temps caractéristiques thermiques entre les milieux fluide et solide, la partie aéro-thermique du couplage est traitée de façon simplifiée, en considérant le fluide comme une suite d'états stationnaires. L'échauffement de la plaque métallique provoque sa déformation (la loi de comportement mécanique du matériau est de type élasto-visco-plastique). Le déplacement de l'interface fluide-structure est propagé sur le maillage fluide. En se basant sur les similitudes entre jets non réactifs et réactifs (de type flamme) dans le cas de l'impact, des calculs couplés sont menés dans des configurations 2D et 3D de l'impact d'un jet chaud non réactif.
3

Méthodes numériques pour problèmes d'interaction fluide-structure avec valves

Diniz Dos Santos, Nuno 11 December 2007 (has links) (PDF)
Cette thèse est motivée par la modélisation et la simulation numérique des phénomènes d'interaction fluide-structure autour de valves cardiaques. L'interaction avec la paroi des vaisseaux est traitée avec une formulation Arbitraire Lagrange Euler (ALE), tandis que l'interaction avec les valves est traitée à l'aide de multiplicateurs de Lagrange, dans une formulation de type Domaines Fictifs (FD). Après une présentation de synthèse des diverses méthodes utilisées en interaction fluide-structure dans les écoulements sanguins, nous décrivons une méthode permettant de simuler la dynamique d'une valve immergée dans un écoulement visqueux incompressible. L'algorithme de couplage est partionné, ce qui permet de conserver des solveurs fluides et structures indépendants. Le maillage du fluide est mobile pour suivre la paroi des vaisseaux, mais indépendant du maillage des valves. Ceci autorise des très grands déplacements sans nécessiter de remaillage. Nous proposons une stratégie pour gérer le contact entre plusieurs valves. L'algorithme est totalement indépendant des solveurs de structures et est bien adapté au couplage fluide-structure partionné. Enfin, nous proposons un schéma de couplage semi-implicite permettant de mêler efficacement les formulations ALE et FD. Toutes les méthodes considérées sont accompagnées de nombreux tests numériques en 2D et 3D.
4

Méthodes numériques pour problèmes d'interaction fluide structure avec valves

Diniz Dos Santos, Nuno 11 December 2007 (has links) (PDF)
Cette thèse est motivée par la modélisation et la simulation numérique des phénomènes d'interaction fluide-structure autour de valves cardiaques. L'interaction avec la paroi des vaisseaux est traitée avec une formulation Arbitraire Lagrange Euler (ALE), tandis que l'interaction avec les valves est traitée à l'aide de multiplicateurs de Lagrange, dans une formulation de type Domaines Fictifs (FD). Après une présentation de synthèse des diverses méthodes utilisées en interaction fluide-structure dans les écoulements sanguins, nous décrivons une méthode permettant de simuler la dynamique d'une valve immergée dans un écoulement visqueux incompressible. L'algorithme de couplage est partitionné, ce qui permet de conserver des solveurs fluides et structures indépendants. Le maillage du fluide est mobile pour suivre la paroi des vaisseaux, mais indépendant du maillage des valves. Ceci autorise des très grands déplacements sans nécessiter de remaillage. Nous proposons une stratégie pour gérer le contact entre plusieurs valves. L'algorithme est totalement indépendant des solveurs de structures et est bien adapté au couplage fluide-structure partitionné. Enfin, nous proposons un schéma de couplage semi-implicite permettant de mêler efficacement les formulations ALE et FD. Toutes les méthodes considérées sont accompagnées de nombreux tests numériques en 2D et 3D.
5

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

LI, Zhe 14 November 2013 (has links) (PDF)
L'Interaction Fluide-Structure (IFS) est un sujet d'intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d'approches de simulation numérique peuvent être utilisés pour étudier les problèmes d'IFS afin d'obtenir de meilleurs conceptions et d'éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d' ' Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l'interface entre le fluide et la structure d'une manière naturelle. Une stratégie de couplage conservant l'énergie est proposée pour les problèmes d'IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l'interface, la méthode proposée peut assurer qu'il n'y a ni injection d'énergie ni dissipation d'énergie à l'interface. L'énergie de l'interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l'ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d'abord appliquée 'a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu'elle ne dégrade pas l'ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d'ondes de choc au travers de l'interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d'onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d'autres méthodes de couplage.
6

Dynamique d'un hydrofoil dans un fluide visqueux : algorithmes de couplage en IFS et application / Dynamics of a hydrofoilin a viscous fluid : coupling algorithms and IFS application

Rajaomazava III, Tolotra Emerry 17 April 2014 (has links)
Le travail engagé dans cette thèse porte sur l'étude numérique des Interactions Fluide-structure en hydrodynamique. Dans une première partie, une analyse détaillée des méthodes de couplage (schémas décalés) a été effectuée sur un cas académique. Il s'agit de la résolution de l'équation non-linéaire de Burgers dans un domaine mobile, dont I'interface mobile est représentée par un système de type masse ressort. Selon la discrétisation en temps et la linéarisation du problème couplé, on distingue quatre schémas de couplages différents : explicite, semi-implicite, implicite-externe et implicite-interne. Une étude comparative des performances en vitesse de convergence et en temps de calcul de ces schémas a été effectuée. Les performances varient suivant le schéma de couplage utilisé. Le schéma explicite permet un calcul rapide en comparaison des autres schémas. En revanche il n'assure pas la conservation de l'énergie mécanique à I'interface fluide-structure. D'où le problème de stabilité du schéma numérique. Ce problème ne se pose pas pour les algorithmes de couplage implicites, car dans ce cas la conservation de l'énergie à I'interface est assurée. Il s'agit en effet d'une condition de convergence du schéma implicite. Ce schéma requière plus de temps de calcul, mais il est nécessaire pour avoir plus de précision dans les résultats. Par ailleurs, I'analyse des déplacements de I'interface fluide-structure montre que l'écart entre la position de I'interface comme étant le bord mobile du fluide et la position de la structure, dépend principalement du schéma d'actualisation du maillage choisi.Dans une deuxième partie une extension de l'étude des algorithmes de couplage à un problème plus concret d'IFS est effectuée. Un hydrofoil en pilonnement et tangage est ainsi étudié. L'équation de la dynamique de I'hydrofoil est écrite en considérant un centre de rotation situé à une distance non nulle du centre de gravité.Ce qui rend l'équation non-linéaire et introduit un couplage des deux modes pilonnement et tangage) ainsi qu'un amortissement du tangage. La dynamique de I'hydrofoil est étudiée pour différentes configurations : en mouvement libre ou forcé, dans un fluide au repos ou en écoulement. On observe que le mouvement de I'hydrofoil est pseudo périodique amorti. L'évolution des charges hydrodynamiques suit également cette tendance et tend vers un point d'équilibre. L'étude vibratoire montre bien une modification des fréquences propres du système, qui varient suivant que le fluide est au repos ou en écoulement. Le problème est également couplé à l'équation de la position du centre de pression, qui dépend de la position de I'hydrofoil et de l'écoulement. Celle-ci présente une singularité lorsque la portance et la traînée s'annulent simultanément.Enfin Les équations prenant en compte la présence d'un fluide non-homogène à I'interface fluide-structure, du type des écoulements cavitants par poche stationnaire ou auto-oscillante, ont été développés. La méthode consiste à séparer les variables du fluide en écoulement autour d'un hydrofoil immobile d'une part et celles de l'écoulement généré par la vibration de I'hydrofoil d'autre part. Il en résulte un opérateur de masse ajoutée non symétrique en milieu non homogène et un opérateur d'amortissement ajouté dû au taux de variations de masse volumique à l’interface dans le cas auto-oscillant. L'ensemble se traduit par une modulation au cours du temps des fréquences propres et des amplitudes du système. / A numerical study of Fluid Structure Interaction (FSI) in hydrodynamic case is adressed in this thesis. Thirstly, the analysis of coupling methods (staggered schemes) was established to an academic case. It corresponds to the resolution of non linear Burgers equation in a moving domain where the moving interface is assimilated to a mass spring system. According to the time discretisation and linearization of the coupled problem, four coupling scheme can be defined : explicit, semi-implicit, implicit-outer and implicit-inner. A comparative performance study in convergence and computing time were performed. The performance depends on the coupling scheme used. The explicit scheme requires less time compared to the others schemes. However it does not allow the mechanical energy conservation at the interface, inducing the stability issue of the numerical scheme. This instabilities does not arise for the implicit coupling algorithms because the energy conservation at the interface is fulfilled. lndeed, a convergence condition is added for implicit schemes. Even though these schemes require more computing time, they are necessary to get better precision. Inter alia, the fluid-structure interface analysis shows that the gap between the interface taken as the moving boundary and the structure position mostly depends on the actualization scheme of the chosen mesh.In the second part, the coupling algorithm study is extended to physical problem of FSI. A hydrofoil in heave and pitch immersed in a fluid flow is then studied. The equation of hydrofoil movement takes account the distance between the rotation center and the center of gravity. This causes the equation to be nonlinear and introduces a coupling of the two movements (heave and pitch) and a damping of the heave movement. The hydrofoil dynamic is studied for different configurations : forced movements or not, immersed in a fluid at rest or a flowing one. It shows that the hydrofoil movement is pseudo-periodic followed by a damping movement. The hydrodynamic forces tend to follow the same evolution and converge to an equilibrium point. The vibration study clearly shows a frequency modification of the system that depends on the fluid flow (at rest or with an inflow). The problem is also coupled to center of pressure position's equation which depends on the hydrofoil position and the fluid flow. The trend of the position presents a singularity when the lift and drag coefficients vanishes at the same time.Last part, the equation that take into account the inhomogeneous characteristic of the fluid at the fluid-structure interface as well as sheet cavitation in steady or unsteady case, was developed. The method allows the separation of the fluid variables when flowing around the fixed hydrofoil on one hand and the flow generated by the hydrofoil vibration one the other. This introduces an asymmetric added mass operator and an added damping operation due to the variation of the density of the fluid at the interface in unsteady case.The whole system results in a natural frequencies and amplitudes modulation over time.
7

Couplage aéro-thermo-mécanique pour la prédiction de la déformation d'une plaque soumise à une flamme / Fluid-thermal-structural coupling to predict the deformation of a plate impacted by a flame

Baqué, Bénédicte 25 April 2012 (has links)
Cette thèse consiste à mettre en place un couplage externe aéro-thermo-mécanique, sur la base d'un schéma partitionné, entre les codes de recherche CEDRE (mécanique des fluides, volumes finis) et Z-set (modules indépendants pour la mécanique des structures et la thermique du solide, éléments finis). Les résultats numériques sont confrontés à ceux de l'expérience (une campagne de mesures a été menée dans le cadre de cette étude), dans le cas d'un problème complexe lié au domaine de l'aérospatial : l'interaction flamme-paroi. Ce phénomène est piloté par la thermique, à travers le flux de chaleur pariétal généré par la flamme. A cause de la disparité des temps caractéristiques thermiques entre les milieux fluide et solide, la partie aéro-thermique du couplage est traitée de façon simplifiée, en considérant le fluide comme une suite d'états stationnaires. L'échauffement de la plaque métallique provoque sa déformation (la loi de comportement mécanique du matériau est de type élasto-visco-plastique). Le déplacement de l'interface fluide-structure est propagé sur le maillage fluide. En se basant sur les similitudes entre jets non réactifs et réactifs (de type flamme) dans le cas de l'impact, des calculs couplés sont menés dans des configurations 2D et 3D de l'impact d'un jet chaud non réactif. / This thesis consists in setting up an external fluid-thermal-structural coupling, based on a partitionned scheme, between the research codes CEDRE (fluid mechanics, finite volumes) and Z-set (independent solvers for structural mechanics and heat transfer through the solid). The numerical results are compared with experimental data, to study a complex problem related to the aerospace certification process: the flame-wall interaction. This phenomenon is is driven by the heat flux generated by the flame close to the wall. Because of the disparity of thermal characteristic times between the fluid and the solid, the aero-thermal part of the coupling is simplified by considering the fluid as a sequence of steady states. The heating of the metallic plate causes its deformation (the material has a viscoplastic behavior). The displacement of the fluid-structure interface is propagated through the fluid mesh. Based on similitudes between impinging reacting jets (flames) and non-reacting jets, coupled computations are performed in 2D and 3D configurations with an equivalent non-reacting hot jet.
8

Développement d'une méthode de simulation de couplage fluide-structure à l'aide de la méthode SPH

Li, Zhe 14 November 2013 (has links)
L’Interaction Fluide-Structure (IFS) est un sujet d’intérêt dans beaucoup de problèmes pratiques aussi bien pour les recherches académiques ainsi que pour les applications industrielles. Différents types d’approches de simulation numérique peuvent être utilisés pour étudier les problèmes d’IFS afin d’obtenir de meilleurs conceptions et d’éviter des incidents indésirables. Dans ce travail, le domaine du fluide est simulé par une méthode hybride sans maillage (SPH-ALE), et la structure est discrétisée par la méthode d’ ´ Eléments Finis (EF). Considérant le fluide comme un ensemble de particules, on peut suivre l’interface entre le fluide et la structure d’une manière naturelle. Une stratégie de couplage conservant l’énergie est proposée pour les problèmes d’IFS transitoires où différents intégrateurs temporels sont utilisés pour chaque sous-domaine: 2nd ordre schéma de Runge-Kutta pour le fluide et schéma de Newmark pour le solide. En imposant la continuité de la vitesse normale à l’interface, la méthode proposée peut assurer qu’il n’y a ni injection d’énergie ni dissipation d’énergie à l’interface. L’énergie de l’interface est donc nulle (aux erreurs de troncature près) durant toute la période de simulation numérique. Cette méthode de couplage assure donc que la simulation de couplage est numériquement stable en temps. Les expérimentations numériques montrent que le calcul converge en temps avec l’ordre de convergence minimal des schémas utilisés dans chaque sous-domaine. Cette méthode proposée est d’abord appliquée `a un problème de piston mono-dimensionnel. On vérifie sur ce cas qu’elle ne dégrade pas l’ordre de précision en temps des schémas utilisés. On effectue ensuite les études des phénomènes de propagation d’ondes de choc au travers de l’interface fluide-structure. Un excellent accord avec la solution analytique est observé dans les cas de teste de propagation d’onde en 1-D. Finalement, les exemples multi-dimensionnels sont présentés. Ses résultats sont comparés avec ceux obtenus par d’autres méthodes de couplage. / The Fluid-Structure Interaction (FSI) effects are of great importance for many multi-physical problems in academic researches as well as in engineering sciences. Various types of numerical simulation approaches may be used to investigate the FSI problems in order to get more reliable conception and to avoid unexpected disasters. In this work, the fluid sub-domain is simulated by a hybrid mesh-less method (SPH-ALE), and the structure is discretized by the Finite Element (FE) method. As the fluid is considered as a set of particles, one can easily track the fluid structure interface. An energy-conserving coupling strategy is proposed for transient fluid-structure interaction problems where different time integrators are used for each sub-domain: 2nd order Runge-Kutta scheme for the fluid and Newmark time integrator for the solid. By imposing a normal velocity constraint condition at the interface, this proposed coupling method ensures that neither energy injection nor energy dissipation will occur at the interface so that the interface energy is rigorously zero during the whole period of numerical simulation. This coupling method thus ensures that the coupling simulation shall be stable in time, and secondly, the numerical simulation will converge in time with the minimal convergence rate of all the time integrators chosen for each sub-domain. The proposed method is first applied to a mono-dimensional piston problem in which we verify that this method does not degrade the order of accuracy in time of the used time integrators. Then we use this coupling method to investigate the phenomena of propagation of shock waves across the fluidstructure interface. A good agreement is observed between the numerical results and the analytical solutions in the 1-D shock wave propagation test cases. Finally, some multi-dimensional examples are presented. The results are compared with the ones obtained by other coupling approaches.

Page generated in 0.0921 seconds