• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Déséquilibre excitation/inhibition dans la moelle épinière dorsale en situation de douleurs chroniques : rôle des molécules d’adhérence neuroligines / Imbalance excitation/ inhibition in the spinal dorsal horn in chronic pain conditions : the role of adhesion molecules neuroligins

Dolique, Tiphaine 08 July 2011 (has links)
En état de douleur chronique, la sensibilisation centrale s’accompagne d’une modification de l’équilibre excitation/inhibition en faveur d’une excitation accrue de la corne dorsale de la moelle épinière. Cet équilibre implique des molécules d’adhérence telles que les neuroligines postsynaptiques (NLs). Dans une première partie de notre travail de thèse, nous avons étudié la régulation éventuelle de ces protéines dans un modèle de douleur neuropathique (Spinal Nerve Ligation, SNL) chez le rat. Nos données ont montré une surexpression inattendue de la NL2, généralement associée à l’inhibition, alors que l’expression de la NL1, généralement associée à l’excitation, ne change pas. Le blocage de l’expression de NL2 in vivo par application intrathécale de siRNA, a produit des effets anti-nociceptifs réversant de façon significative l’allodynie mécanique observée chez les rats SNL. L’étude ultérieure des partenaires pré- et postsynaptiques de NL2, a démontré une co-variation spécifique avec PSD95, une protéine d’échafaudage des synapses excitatrices. De plus, une approche par co-immunoprécipitation a mis en évidence une augmentation significative des interactions protéiques NL2 /PSD95 chez les rats SNL. Enfin, cette association inhabituelle en condition neuropathique, est apparue liée à la surexpression spécifique de NL2(-), un variant d’épissage de NL2 normalement minoritaire en condition physiologique. La surexpression, l’augmentation d’association avec PSD95, et l’effet pro-nociceptif inattendu de la NL2 « inhibitrice » en condition de douleur neuropathique, indiquent une permutation fonctionnelle de la NL2 de l’inhibition vers l’excitation modifiant le rapport synaptique en faveur d’une excitation globale plus élevée dans la corne dorsale.Dans une deuxième partie du travail, nous avons exploré le rôle des molécules d’adhérence NLs dans la sensibilisation spinale associée à un autre type de douleur chronique, à savoir la douleur cancéreuse, sur un modèle de cancer de l’os chez le rat. L’étude de l’expression des NLs et de leurs partenaires, a montré une augmentation d’expression spécifique de la NL1 et de S-SCAM, une autre protéine d’échafaudage des synapses excitatrices. D’autre part, d’après la littérature, ce modèle se caractérise par une importante activation gliale dans les cornes dorsales de la moelle épinière, se traduisant notamment par une astrogliose massive. Cependant, nous avons montré que dans le modèle utilisé, il n’y avait aucune variation ni de marqueurs classiques de l’activation astrocytaire (GFAP, S100β), ni des marqueurs microgliaux (OX-42 et Iba1). Au contraire, tous ces paramètres étaient effectivement augmentés dans la corne dorsale ipsilatérale d’animaux neuropathiques. Ces résultats suggèrent que, contrairement à ce qui a été décrit précédemment, la douleur cancéreuse d’origine osseuse n’est pas nécessairement corrélée à une surexpression spinale des marqueurs de la glie réactive, tandis que la douleur neuropathique l’est.En conclusion, nos résultats obtenus dans le modèle de douleur cancéreuse montrent un phénotype concernant des molécules impliquées dans la formation, la spécification et la modulation des synapses, bien différent de celui que nous avons mis en évidence dans le modèle de douleur neuropathique. Nous montrons notamment dans les deux modèles, une implication bien distincte des molécules d’adhérence NLs et de la glie confortant les données de la littérature indiquant que ces deux grandes catégories de douleur chronique ont chacune une signature propre. De plus, nos résultats ouvrent la perspective d’identifier de nouveaux diagnostics et/ou de nouvelles possibilités thérapeutiques, en ciblant spécifiquement les NLs. / In chronic pain states, central sensitization is associated with a modification in the excitation/inhibition balance toward increased excitation in the spinal dorsal horn. This balance involves adhesion molecules such as the postsynaptic Neuroligins (NLs). In a first part of our thesis work, we investigated the putative regulation of these proteins in the Spinal Nerve Ligation (SNL) model of neuropathy in the rat. Our data showed an unexpected upregulation of NL2, usually associated to inhibition, whereas expression of NL1, usually associated to excitation, did not change. The in vivo expression blockade of NL2 by intrathecal injection of siRNAs, produced specific antinociceptive effects, significantly reversing the SNL-induced mechanical allodynia. Subsequent study of pre- and postsynaptic NL2 partners, demonstrated a specific co-variation with PSD95, a scaffolding protein of excitatory synapses. Moreover, a co-immunoprecipitation approach showed a significant increase of NL2/PSD95 protein interactions in SNL rats. Finally, this unusual association in neuropathic conditions, appeared to be linked to specific over-expression of NL2(-), a NL2 splice variant usually a minority in physiological conditions. Over-expression, increased association with PSD95, and unexpected pronociceptive effect of the “inhibitory” NL2 in neuropathic pain condition, suggest a functional shift of NL2 from inhibition to excitation changing the synaptic ratio toward higher overall excitation in the dorsal horn.In a second part of our work, we investigated the role of the NLs adhesion molecules in spinal sensitization associated with another type of chronic pain, namely cancer pain, using a rat model of bone cancer. The study of the expression of NLs and partners, showed a specific increase in the expression of NL1 and S-SCAM, another postsynaptic scaffolding protein at excitatory synapses. Moreover, according to the literature, this model is characterized by a strong glial activation in the spinal dorsal horn, identified especially by a massive astrogliosis. However, we showed that in the bone cancer model used, there was no variation, neither in the classical markers of astrocyte activation (GFAP, S100β), nor in microglial markers (OX-42 et Iba1). On the contrary, all these parameters did actually increase in the ipsilateral dorsal horn of SNL neuropathic rats. These results suggest that, at odd with what was previously described, bone cancer pain is not necessarily correlated with a spinal overexpression of markers of reactive glia, whereas neuropathic pain is.In conclusion, our results obtained with the cancer pain model, show that the molecules involved in the formation, specification and modulation of synapses, yield a phenotypes clearly different to the one evidenced in the model of neuropathic pain. More particularly, we show in the two models, a well distinct involvement of the NL adhesion molecules and of glia, reinforcing reports from the literature, which indicate that the two important categories of chronic pain, cancer and neuropathic, each have a peculiar signature. Moreover, our results raise the possibility that new diagnosis and/or new therapeutic possibilities may emerge from targeting NL expression
2

Effets de la noradrénaline sur les transmissions synaptiques dans la corne dorsale de la moelle épinière de rat / Effects of noradrenaline on synaptic transmissions in the dorsal horn of the rat spinal cord

Seibt, Frederik 07 July 2015 (has links)
La corne dorsale de la moelle épinière (CDME) est un site d’intégration et de modulation de l’information somatosensorielle. Les laminae profondes de la CDME jouent un rôle important dans la modulation des informations nociceptives. Notre objectif a été de caractériser les effets de la NA sur la transmission synaptique des laminae profondes de la CDME. Nous montrons que la NA facilite la transmission synaptique inhibitrice dans les laminae III-V de la CDME. Ce phénomène met en jeu l’activation d’adrénocepteurs alpha1, alpha2, et bêta et nécessite une communication interlaminaire intacte entre les laminae III-IV et V. L’inhibition du métabolisme glial produit les mêmes effets qu’une section mécanique entre les laminae IV et V. Une interaction entre les cellules gliales et les neurones des laminae profondes la CDME semble donc indispensable à l’effet facilitateur de la NA. / The dorsal horn of the spinal cord (DH) is an important site of integration and modulation of somatosensory information and deep laminae of the DH play an important role in the modulation of nociceptive information in the neuronal network of the spinal cord.Our aim was to characterize the effects of NA on synaptic transmission in deep laminae of the DH.We show that NA facilitates inhibitory synaptic transmission in laminae III-IV of the DH. This phenomenon involves the activation of alpha1, alpha2, and beta adrenoceptors and requires intact interlaminar communications between laminae III-IV and V. Glial cell metabolism inhibition has the same consequences as a mechanical section between laminae IV and V. These results indicate that an interaction between glial cell and deep laminae neurons of the DH seems essential for the facilitatory effect of NA on inhibitory synaptic communications in laminae III-IV of the DH.
3

Spinal cholinergic system and chronic pain / Douleur chronique et système cholinergique spinal

Dhanasobhon, Dhanasak 24 October 2017 (has links)
Chez les rongeurs et humains, un « tonus » cholinergique spinal endogène modulant les comportements nociceptifs (douloureux) a été décrit. Une source potentielle de cette acétylcholine sont les interneurones cholinergiques de la corne dorsale (CD) de la moelle épinière. Nos objectifs étaient les suivants : (1) caractériser le « tonus » cholinergique spinal responsable de l’établissement des seuils mécaniques nociceptifs et (2) élucider le rôle des neurones cholinergiques CD dans la modulation de l'information sensorielle chez des animaux naïfs et neuropathiques. Nous avons confirmé la présence d'un « tonus » cholinergique qui module les seuils mécaniques et démontré qu'il est encore présent, bien qu'il soit modifié, après une neuropathie. Les interneurones cholinergiques reçoivent des entrées excitatrices localisées sur des segments plus distants et reçoivent généralement une faible fréquence d’entrées inhibitrices. De plus, ils sont indirectement reliés par des afférences primaires nociceptives qui expriment TRPV1, ce qui démontre leur implication dans le circuit nociceptif. Dans les conditions neuropathiques, les entrées des neurones LIII / IV ne sont pas affectées après une lésion du nerf périphérique. Une meilleure compréhension du système cholinergique spinal peut ouvrir la voie à une thérapie alternative contre la douleur. / An endogenous spinal cholinergic tone modulating nociceptive (pain­like) behaviors has been demonstrated in rodents and humans. One potential source of this acetylcholine is the spinal Dorsal Horn (DH) cholinergic interneurons. Our objectives were to: (1) characterize the spinal cholinergic tone establishing mechanical nociceptive thresholds and (2) to elucidate the role of DH cholinergic neurons in the modulation of sensory information of naïve and neuropathic animals. We have confirmed the presence of a cholinergic tone modulating mechanical thresholds and demonstrated that it is still present, although altered, after neuropathy. The DH cholinergic interneurons receive excitatory inputs from distant spinal segments and generally receive lower inhibitory inputs. In addition, they are indirectly connected by a subset of nociceptive primary afferents expressing TRPV1, demonstrating their involvement in nociceptive processing. In neuropathic spinal circuits, the inputs to LIII/IV neurons appears to be unaffected after injury. Better understanding the spinal cholinergic system can pave way to alternative pain therapy.
4

Propriétés morphologiques et électrophysiologiques des interneurones PKCγ de la couche IIi du Sp5C chez le rat / Morphological and electrophysiological characterization of lamina IIi PKCγ-interneurons within the medullary dorsal horn of adult rats.

El Khoueiry, Corinne 28 September 2015 (has links)
L'allodynie mécanique est un symptôme cardinal des douleurs persistantes. Elle est due à l’activation de circuits, habituellement bloqués, des couches superficielles de la corne dorsale spinale ou du sous-noyau caudal du trijumeau (Sp5C), par lesquels les afférences mécaniques à bas seuil peuvent accéder aux neurones nociceptifs de projection de la couche I. Un élément déterminant de ces circuits est une classe d’interneurones excitateurs de la couche II interne (IIi) exprimant l'isoforme gamma de la protéine kinase C (PKCγ), et recevant des afférences des mécanorecepteurs à bas seuil. La modulation de l’inhibition tonique de ces interneurones PKCγ contribue à l’apparition de l’allodynie mécanique. Cependant la morphologie, les propriétés électrophysiologiques et les caractéristiques des afférences excitatrices et inhibitrices de ces interneurones PKCγ ne sont toujours pas connues. Utilisant des techniques d’électrophysiologie (enregistrements patch-clamp) et d'immunohistochimie sur tranches de Sp5C, nous avons caractérisé les propriétés des interneurones PKCγ de la couche IIi du Sp5C chez le rat adulte et comparé ces propriétés avec celles d’interneurones voisins n’exprimant pas la PKCγ.Cette étude révèle que l’arborisation neuritique des interneurones PKCγ s’étend largement au sein de la couche IIi, et peut se prolonger du coté dorsal jusqu’à la couche II externe, sans jamais atteindre la couche I. En outre, en fonction de cette extension neuritique, au moins deux sous-populations d'interneurones PKCγ peuvent être dissociées – centrales et radiales – qui s’avèrent être aussi fonctionnellement différentes. Comparés aux autres neurones non-PKCγ de la conche IIi, les interneurones PKCγ, dans leur ensemble, présentent un seuil de déclenchement des potentiels d’action plus bas et, souvent associée, plus fréquemment une réponse tonique à un courant dépolarisant, indiquant ainsi qu’ils sont plus facilement excitables. Cependant, ils reçoivent inversement une excitation synaptique plus faible. Quant aux afférences inhibitrices, la plupart des interneurones PKCγ expriment des synapses mixtes associant récepteurs GABAAergiques (GABAAR) et récepteurs glycinergiques (GlyR). Seul un petit nombre d’entre eux exprime des synapses uniquement GABAAR ou GlyR. Pourtant, tous les interneurones PKCγ reçoivent non seulement des mIPSCs mixtes GABAAR-GlyR, mais aussi des mIPSCs uniquement GABAAR ou uniquement GlyR. / Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH), through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Key determinants of these circuits are lamina II (IIi) excitatory interneurons that selectively concentrate the gamma isoform of protein kinase C (PKCγ) and receive low-threshold mechanical receptor (LTMR) inputs. Tonic inhibition of PKCγ interneurons is thought to gate circuits underlying mechanical allodynia. However, the morphology, electrophysiological properties and excitatory and inhibitory synaptic inputs on these PKCγ interneurons are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized these lamina IIi PKCγ interneurons and compared them with neighboring non-PKCγ interneurons. Our results reveal that the neurites of PKCγ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, according to cell bodies and the orientation and extent of dendritic arbors, at least two morphologically different classes of PKCγ interneurons can be identified – central and radial – which appear to be also functionally different. Compared with neighboring lamina IIi non-PKCγ interneurons, PKCγ interneurons exhibit a lower threshold for action potentials, consistent with a more frequent tonic spike discharge to depolarizing step current, indicating that they are more excitable than other lamina IIi neurons. On the other hand, they receive a weaker excitatory synaptic drive. According to inhibitory inputs, most PKCγ interneurons display mixed-GABAA (GABAAR) and glycine (GlyR) receptor synapses with only very few of them displaying also GABAAR-alone or GlyR-alone synapses. Interestingly, all PKCγ interneurons exhibit mixed GABAAR–GlyR as well as GABAAR-only and GlyR-only mIPSCs. Altogether, this study indicates that PKCγ interneurons within lamina IIi of MDH are different from other lamina IIi neighboring neurons according to morphology, electrophysiological properties and synaptic inputs. This is consistent with their specific role in the gating of dorsally directed circuits within the MDH underlying mechanical allodynia. Moreover, we have identified two morphological and functional subclasses of PKCγ interneurons which might thus differently contribute to this gating.
5

Système cholinergique et modulation de la transmission nociceptive spinale / Cholinergic system and spinal nociceptive transmission modulation

Mesnage, Bruce 04 November 2013 (has links)
L’acétylcholine (ACh) endogène de la corne dorsale de la moelle épinière (CDME) exerce une analgésie puissante utilisée en clinique, dont la source et les mécanismes demeurent inconnus. Elle siège probablement au niveau d’un plexus de fibres cholinergiques de la CDME d’origine non-élucidée. Dans ce contexte, nous avons pu établir que ce plexus est principalement issu d’interneurones cholinergiques spinaux caractérisés dans ces travaux, qui seraient donc le substrat probable de l’analgésie décrite. Décrits comme concourant aux effets aigus et analgésiques de la morphine, nous avons, par ailleurs, pu observer que les récepteurs de l’ACh participaient également aux effets chroniques et pro-algésique de la morphine, notamment au niveau de la CDME. Ceci place donc l’ACh comme un effecteur ou intermédiaire de la morphine.Nos travaux suggèrent ainsi que le système cholinergique spinal pourrait constituer une cible thérapeutique alternative pour de nouveaux traitements de la douleur / In the spinal cord dorsal horn (SCDH), endogenous acetylcholine (ACh) acts as a powerful analgesia, of clinical use. Though its source and mechanisms remain unravelled, this analgesia probably lies in a plexus of cholinergic fibers (PCF) located in the SCDH and of undetermined origin. In this context, we established that the PCF mainly originates from a spinal population of cholinergic interneurons, fully characterized in this work. These are, thus, the likely substrate of the spinal cholinergic analgesia.Besides, ACh receptors (AChR) partly mediate the analgesic acute effects of morphine. In this work, we also observed that a chronically-administered AChR agonist reproduces as well the pro-algesic effects of morphine in the same conditions. Thus, ACh appears as a possible intermediary or a final effecter of the morphine pain pathways.Our data suggest that the cholinergic system could become a new putative therapeutic target in pain management and treatment.

Page generated in 0.0587 seconds