Spelling suggestions: "subject:"corpo arquimediano"" "subject:"corpo arquimedianos""
1 |
Números p-ádicosGusmão, Ítalo Moraes de Melo 25 August 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:07:28Z
No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Approved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T16:11:36Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Made available in DSpace on 2017-08-29T16:11:36Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5)
Previous issue date: 2015-08-25 / We introduce and de ne the p-adics integer numbers as a result of a search for solutions,
for a congruences system that derives from a variable polynomial equation
with rational coe cients. We evidence that the p-adic integers set is strictly larger
than the integers. We present a criterion so that a rational that holds a correspondent
in a p-adic integers set. We search for the possibility to represent irrational and
complex numbers as p-adics integers. Algebraically, the p-adic integers set will be
an integral domain and, from this, we search for the construction of p-adic integers
quotient eld so that shall form the p-adic rationals eld, from a purely algebraically
point of view. In the second part, we will expose the bases for the construction of
a norm that's di erent from the usual, establishing so a new metric in the rational
numbers set and the construction of a non-archimedian eld. / Apresentamos e de nimos os números inteiros p-ádicos como o resultado de uma
busca por soluções, para um sistema de congruências, que parte de uma equação
polinomial de uma variável, com coe cientes racionais. Constatamos que o conjunto
dos inteiros p-ádicos é estritamente maior que os inteiros. Mostramos um critério
para que um racional possua um correspondente num conjunto de inteiros p-ádicos.
Buscamos a possibilidade de representarmos números irracionais e números complexos
como inteiros p-ádicos. Algebricamente, o conjunto dos inteiros p-ádicos será
um domínio de integridade e, partindo disto, buscamos a construção de um corpo de
frações dos inteiros p-ádicos, que formarão, assim, o corpo dos racionais p-ádicos, de
um ponto de vista puramente algébrico. Na segunda parte, vamos expor os fundamentos
para a construção de uma norma diferente da habitual, estabelecendo assim
uma nova métrica, no conjunto dos números racionais, e a construção de um corpo
não-arquimediano.
|
Page generated in 0.0392 seconds