Spelling suggestions: "subject:"nonarchimedean field"" "subject:"nonarchimedian field""
1 |
On the linearization of non-Archimedean holomorphic functions near an indifferent fixed pointLindahl, Karl-Olof January 2007 (has links)
We consider the problem of local linearization of power series defined over complete valued fields. The complex field case has been studied since the end of the nineteenth century, and renders a delicate number theoretical problem of small divisors related to diophantine approximation. Since a work of Herman and Yoccoz in 1981, there has been an increasing interest in generalizations to other valued fields like p-adic fields and various function fields. We present some new results in this domain of research. In particular, for fields of prime characteristic, the problem leads to a combinatorial problem of seemingly great complexity, albeit of another nature than in the complex field case. In cases for which linearization is possible, we estimate the size of linearization discs and prove existence of periodic points on the boundary. We also prove that transitivity and ergodicity is preserved under the linearization. In particular, transitivity and ergodicity on a sphere inside a non-Archimedean linearization disc is possible only for fields of p-adic numbers.
|
2 |
Números p-ádicosGusmão, Ítalo Moraes de Melo 25 August 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-29T16:07:28Z
No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Approved for entry into archive by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-29T16:11:36Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5) / Made available in DSpace on 2017-08-29T16:11:36Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 945033 bytes, checksum: cab32f76c5a55b0c6400063ed6b40ff6 (MD5)
Previous issue date: 2015-08-25 / We introduce and de ne the p-adics integer numbers as a result of a search for solutions,
for a congruences system that derives from a variable polynomial equation
with rational coe cients. We evidence that the p-adic integers set is strictly larger
than the integers. We present a criterion so that a rational that holds a correspondent
in a p-adic integers set. We search for the possibility to represent irrational and
complex numbers as p-adics integers. Algebraically, the p-adic integers set will be
an integral domain and, from this, we search for the construction of p-adic integers
quotient eld so that shall form the p-adic rationals eld, from a purely algebraically
point of view. In the second part, we will expose the bases for the construction of
a norm that's di erent from the usual, establishing so a new metric in the rational
numbers set and the construction of a non-archimedian eld. / Apresentamos e de nimos os números inteiros p-ádicos como o resultado de uma
busca por soluções, para um sistema de congruências, que parte de uma equação
polinomial de uma variável, com coe cientes racionais. Constatamos que o conjunto
dos inteiros p-ádicos é estritamente maior que os inteiros. Mostramos um critério
para que um racional possua um correspondente num conjunto de inteiros p-ádicos.
Buscamos a possibilidade de representarmos números irracionais e números complexos
como inteiros p-ádicos. Algebricamente, o conjunto dos inteiros p-ádicos será
um domínio de integridade e, partindo disto, buscamos a construção de um corpo de
frações dos inteiros p-ádicos, que formarão, assim, o corpo dos racionais p-ádicos, de
um ponto de vista puramente algébrico. Na segunda parte, vamos expor os fundamentos
para a construção de uma norma diferente da habitual, estabelecendo assim
uma nova métrica, no conjunto dos números racionais, e a construção de um corpo
não-arquimediano.
|
Page generated in 0.0693 seconds