• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predicting corporate credit ratings using neural network models

Frank, Simon James 12 1900 (has links)
Thesis (MBA (Business Management))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: For many organisations who wish to sell their debt, or investors who are looking to invest in an organisation, company credit ratings are an important surrogate measure for the marketability or risk associated with a particular issue. Credit ratings are issued by a limited number of authorised companies – with the predominant being Standard & Poor’s, Moody’s and Fitch – who have the necessary experience, skills and motive to calculate an objective credit rating. In the wake of some high profile bankruptcies, there has been recent conjecture about the accuracy and reliability of current ratings. Issues relating specifically to the lack of competition in the rating market have been identified as possible causes of the poor timeliness of rating updates. Furthermore, the cost of obtaining (or updating) a rating from one of the predominant agencies has also been identified as a contributing factor. The high costs can lead to a conflict of interest where rating agencies are obliged to issue more favourable ratings to ensure continued patronage. Based on these issues, there is sufficient motive to create more cost effective alternatives to predicting corporate credit ratings. It is not the intention of these alternatives to replace the relevancy of existing rating agencies, but rather to make the information more accessible, increase competition, and hold the agencies more accountable for their ratings through better transparency. The alternative method investigated in this report is the use of a backpropagation artificial neural network to predict corporate credit ratings for companies in the manufacturing sector of the United States of America. Past research has shown that backpropagation neural networks are effective machine learning techniques for predicting credit ratings because no prior subjective or expert knowledge, or assumptions on model structure, are required to create a representative model. For the purposes of this study only public information and data is used to develop a cost effective and accessible model. The basis of the research is the assumption that all information (both quantitive and qualitative) that is required to calculate a credit rating for a company, is contained within financial data from income statements, balance sheets and cash flow statements. The premise of the assumption is that any qualitative or subjective assessment about company creditworthiness will ultimately be reflected through financial performance. The results show that a backpropagation neural network, using 10 input variables on a data set of 153 companies, can classify 75% of the ratings accurately. The results also show that including collinear inputs to the model can affect the classification accuracy and prediction variance of the model. It is also shown that latent projection techniques, such as partial least squares, can be used to reduce the dimensionality of the model without making any assumption about data relevancy. The output of these models, however, does not improve the classification accuracy achieved using selected un-correlated inputs. / AFRIKAANSE OPSOMMING: Vir baie organisasies wat skuldbriewe wil verkoop, of beleggers wat in ʼn onderneming wil belê is ʼn maatskappy kredietgradering ’n belangrike plaasvervangende maatstaf vir die bemarkbaarheid van, of die risiko geassosieer met ʼn betrokke uitgifte. Kredietgraderings word deur ʼn beperkte aantal gekeurde maatskappye uitgereik – met die belangrikste synde Standard & Poor’s, Moody’s en Fitch. Hulle het almal die nodige ervaring, kundigheid en rede om objektiewe kredietgraderings te bereken. In die nadraai van ʼn aantal hoë profiel bankrotskappe was daar onlangs gissings oor die akkuraatheid en betroubaarheid van huidige graderings. Kwessies wat spesifiek verband hou met die gebrek aan kompetisie in die graderingsmark is geïdentifiseer as ‘n moontlike oorsaak vir die swak tydigheid van gradering opdatering. Verder word die koste om ‘n gradering (of opdatering van gradering) van een van die dominante agentskappe te bekom ook geïdentifiseer as ʼn verdere bydraende faktor gesien. Die hoë koste kan tot ‘n belange konflik lei as graderingsagentskappe onder druk kom om gunstige graderings uit te reik om sodoende volhoubare klante te behou. As gevolg van hierdie kwessies is daar voldoende motivering om meer koste doeltreffende alternatiewe vir die skatting van korporatiewe kredietgraderings te ondersoek. Dit is nie die doelwit van hierdie alternatiewe om die toepaslikheid van bestaande graderingsagentskappe te vervang nie, maar eerder om die inligting meer toeganklik te maak, mededinging te verhoog en om die agentskappe meer toerekenbaar vir hul graderings te maak deur beter deursigtigheid. Die alternatiewe manier wat in hierdie verslag ondersoek word, is die gebruik van ‘n kunsmatige neurale netwerk om die kredietgraderings van vervaardigingsmaatskappye in die VSA te skat. Vorige navorsing het getoon dat neurale netwerke doeltreffende masjienleer tegnieke is om kredietgraderings te skat omdat geen voorafkennis of gesaghebbende kundigheid, of aannames oor die modelstruktuur nodig is om ‘n verteenwoordigende model te bou. Vir doeleindes van hierdie navorsingsverslag word slegs openbare inligting en data gebruik om ʼn kostedoeltreffende en toeganklike model te bou. Die grondslag van hierdie navorsing is die aanname dat alle inligting (beide kwantitatief en kwalitatief) wat benodig word om ʼn kredietgradering vir ʼn onderneming te bereken, opgesluit is in die finansiële data in die inkomstestate, balansstate en kontantvloei state. Die aanname is dus dat alle kwalitatiewe of subjektiewe assessering oor ‘n maatskappy se kredietwaardigheid uiteindelik in die finansiële prestasie sal reflekteer. Die resultate toon dat ʼn neurale netwerk met 10 toevoer veranderlikes op ‘n datastel van 153 maatskappye 75% van die graderings akkuraat klassifiseer. Die resultate toon ook dat die insluiting van kollineêre toevoere tot die model die klassifikasie akkuraatheid en die variansie van die skatting kan beïnvloed. Daar word verder getoon dat latente projeksietegnieke, soos parsiële kleinste kwadrate, die dimensies van die model kan verminder sonder om enige aannames oor data toepaslikheid te maak. Die afvoer van hierdie modelle verhoog egter nie die klassifikasie akkuraatheid wat behaal is met die gekose ongekorreleerde toevoere nie. 121 pages.

Page generated in 0.121 seconds