• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 19
  • 16
  • 13
  • 13
  • 11
  • 11
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
22

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
23

Aritmética de corpos finitos : algoritmos para a fatoração polinomial

Noriega Sagastegui, Ruth Noemi January 1996 (has links)
Este trabalho descreve algoritmos algébricos para computação em corpos de Galois GF(q), com q = pn onde pé a característica do corpo, que pode ser arbitrariamente grande. Para fundamentar esse estudo é condensada e apresentada Lo ela. a fena.menta algébrica necessári a. Os corpos ·finitos são caracterizados, é mostrado como construí-los e sua aritmética é analisada. Algoritmos determinísticos e probabilísticos são desenvolvidos para. o cálculo de raízes polinomiais e a. fatoração de polinômios sobre esses corpos. Este trabalho é materializado pela implementação de dois algoritmos, o de Cantor-Zassenhaus e o de Rabin, ambos implementados no Sistema de Computação Algébrica MAPLE V Release 3. / This work elescribes algebraic algorithms for computing in Galois Fielels GF(q), with q = pn, where p is the characteristic of the fielel anel may be arbitrar.ialy large. By justifying this work we give a colection of results about topics of Algebra. Dctcnninistics anel probabilistics a.lgorithms are clevelopeel to compute polynomials roots anel for polynornia.l factorization in OF(q).This work is materializccl by the implementation oi' t.wo algorithms, Cantor-Zasscnhaus's algorithm anel Rabin's algoril. hm, both implemented in MAPLE V Rclease 3 Computer Algebra System.
24

Fecho Galoisiano de sub-extensões quárticas do corpo de funções racionais sobre corpos finitos / Galois closures of quartic sub-fields of rational function fields over finite fields

Monteza, David Alberto Saldaña 26 June 2017 (has links)
Seja p um primo, considere q = pe com e ≥ 1 inteiro. Dado o polinômio f (x) = x4+ax3+bx2+ cx+d ∈ Fq[x], consideremos o polinômio F(T) = T4 +aT3 +bT2 +cT + d - y ∈ Fq(y)[T], com y = f (x) sobre Fq(y). O objetivo desse trabalho é determinar o número de polinômios f (x) que tem seu grupo de galois associado GF isomorfo a cada subgrupo transitivo (prefixado) de S4. O trabalho foi baseado no artigo: Galois closures of quartic sub-fields of rational function fields, usando equações auxiliares associadas ao polinômio minimal F(T) de graus 3 e 2 (DUMMIT, 1994); bem como uma caraterização das curvas projetivas planas de grau 2 não singulares. Se car(k) ≠ 2, associamos a F(T) sua cúbica resolvente RF(T) e seu discriminante ΔF. Em seguida obtemos condições para GF ≅ C4 (vide Teorema 2.9), que é ocaso fundamental para determinação dos demais casos. Se car(k) = 2, procuramos determinar condições para GRF ≅ A3, associando ao polinômio RF(T) sua quadrática resolvente P(T) (vide a Proposição 2.13). Apos ter homogeneizado P(T), usamos uma das consequências do teorema de Bézout, a saber, uma curva algébrica projetiva plana C de grau 2 é irredutível se, e somente se, C não tem pontos singulares. Nesta dissertação obtemos resultados semelhantes com uma abordagem relativamente diferente daquela usada pelo autor R. Valentini. / Let be p a prime, q = pe whit e ≥ 1 integer. Let a polynomial f (x) = x4+ax3+bx2+cx+d ∈ Fq[x], considering the polynomial F(T)=T4+aT3+bT2+cT +d, with y= f (x) over Fq(y)[T]. The purpose of the current research is to determine the numbers of polynomials f (x) which have its associated Galois group GF, this GF is isomorphic for each transitive subgroup (prefixed) of A4. This project is based on the article: Galois closures of quartic sub-fields of rational function fields, using auxiliary equations associated to the minimal polynomial F(T) of degrees 3 and 2 (DUMMIT, 1994); besides a characterization of non-singular projective plane curves of degree 2 was used. If car(k) ≠ 2, associated to F(T) the resolvent cubic RF(T) and its discriminant ΔF then conditions for GF are obtained as GF ≅ C4 which is the fundamental case for determining the other cases (Theorem 2.9). If car(k) = 2, to find conditions for GRF ≅ A3, associated to the polynomial RF(T) its resolvent quadratic p(T) (Proposition 2.13). Homogenizing p(T), one of the consequences of the Bezout theorem was applied. It is, a projective plane curve C, which grade 2, is irreducible if and only if C is smooth. In the current dissertation, similar results were obtained using a different approach developed by the author R. Valentini.
25

Parametrização e otimização de criptografia de curvas elípticas amigáveis a emparelhamentos. / Parameterization and optmization of pairing-friendly elliptic curves.

Pereira, Geovandro Carlos Crepaldi Firmino 27 April 2011 (has links)
A tendência para o futuro da tecnologia é a produção de dispositivos eletrônicos e de computação cada vez menores. Em curto e médio prazos, ainda há poucos recursos de memória e processamento neste ambiente. A longo prazo, conforme a Física, a Química e a Microeletrônica se desenvolvem, constata-se significativo aumento na capacidade de tais dispositivos. No intervalo de curto e médio prazos, entre 20 e 50 anos, até que a tecnologia tenha avanços, soluções leves de software se vêem necessárias. No Brasil, o protocolo de assinatura digital RSA é o mais amplamente adotado, sendo obsolescente como padrão. O problema é que os avanços tecnológicos impõem um aumento considerável no tamanho das chaves criptográficas para que se mantenha um nível de segurança adequado, resultando efeitos indesejáveis em tempo de processamento, largura de banda e armazenamento. Como solução imediata, temos a criptografia de curvas elípticas sendo mais adequada para utilização por órgãos públicos e empresas. Dentro do estudo de curvas elípticas, este trabalho contribui especificamente com a introdução de uma nova subfamília das curvas amigáveis a emparelhamento Barreto-Naehrig (BN). A subfamília proposta tem uma descrição computacionalmente simples, tornando-a capaz de oferecer oportunidades de implementação eficiente. A escolha das curvas BN também se baseia no fato de possibilitarem uma larga faixa de níveis práticos de segurança. A partir da subfamília introduzida foram feitas algumas implementações práticas começando com algoritmos mais básicos de operações em corpos de extensão, passando por algoritmos de aritmética elíptica e concluindo com o cálculo da função de emparelhamento. A combinação da nova subfamília BN com a adoção de técnicas de otimização, cuidadosamente escolhidas, permitiu a mais eficiente implementação do emparelhamento Ate ótimo, operação bastante útil em aplicações criptográficas práticas. / The trend for the future consists of steadfast shrinking of electrical and computing devices. In the short to medium term, one will still find constrained storage and processing resources in that environment. In the long run, as Physics, Chemistry and Microelectronics progress, the capabilities of such devices are likely to increase. In 20 to 50 years from now, until technology has firm advances, lightweight software solutions will be needed. In Brazil, the most widely adopted signature protocol, the RSA scheme, is obsolescent as a standard. The problem is that technological advances impose a considerable increase in cryptographic key sizes in order to maintain a suitable security level, bringing about undesirable effects in processing time, bandwidth occupation and storage requirements. As an immediate solution, we have the Elliptic Curve Cryptography which is more suitable for utilization in public agencies and industry. In the field of elliptic curves, this work contributes specifically with the introduction of a new subfamily of the pairing-friendly Barreto-Naehrig (BN) curves. The proposed subfamily has a computationally simple description, and makes it able to offer opportunities for efficient implementation. The choice of the BN curves is also based on the fact that they allow a range of practical security levels. Furthermore, there were made practical implementations from the introduced subfamily, like the most basic extension fields algorithms, elliptic curve arithmetic and pairing computation. The adoption of the new BN subfamily with carefully chosen optimization techniques allowed the most efficient implementation of the optimal Ate pairing, which is a very useful operation in many practical cryptographic applications.
26

Criptografia e curvas elípticas /

Flose, Vania Batista Schunck. January 2011 (has links)
Orientador: Henrique Lazari / Banca: Jaime Edmundo Apaza Rodriguez / Banca: Carina Alves / Resumo: Com o crescimento da comunicação nos dias atuais, a segurança na troca de informa- ções tem se tornado cada vez mais importante o que tem dado destaque a Criptografia. A criptografia consiste de técnicas baseadas em conceitos matemáticos que tem por objetivo transmitir informações sigilosas forma segura através de canais monitorados por terceiros. Um ramo da Criptografia que vem crescendo está ligado ao estudo de curvas elípticas, que é uma das áreas mais ricas da matemática. O nome curvas elípticas é de certa forma enganoso, pois diferente do sentido literal da palavra, que leva a pensar em elipses, se trata de equações relacionadas a um determinado tipo de curva algébrica. Neste trabalho, as curvas elípticas serão estudadas do ponto de vista da álgebra e da teoria dos números com o objetivo de conhecer a Criptografia de Curvas Elípticas que é uma variação do Problema do Logaritmo Discreto / Abstract: With the growth of communication these days, security in exchange for information has become increasingly important what has given prominence to Cryptography. Encryption techniques is based on concepts mathematical aims to transmit sensitive information securely through channels monitored by third parties. A branch of cryptography that has growing up is connected to the study of elliptic curves, which is one of the most rich mathematics. The name elliptic curves is somewhat misleading, as di erent from the literal sense of the word, which makes one think of ellipses if equations is related to a certain type of algebraic curve. in this work, elliptic curves are studied from the viewpoint of algebra and of number theory in order to know the Curve Cryptography Elliptic is a variation of the discrete logarithm problem / Mestre
27

Parametrização e otimização de criptografia de curvas elípticas amigáveis a emparelhamentos. / Parameterization and optmization of pairing-friendly elliptic curves.

Geovandro Carlos Crepaldi Firmino Pereira 27 April 2011 (has links)
A tendência para o futuro da tecnologia é a produção de dispositivos eletrônicos e de computação cada vez menores. Em curto e médio prazos, ainda há poucos recursos de memória e processamento neste ambiente. A longo prazo, conforme a Física, a Química e a Microeletrônica se desenvolvem, constata-se significativo aumento na capacidade de tais dispositivos. No intervalo de curto e médio prazos, entre 20 e 50 anos, até que a tecnologia tenha avanços, soluções leves de software se vêem necessárias. No Brasil, o protocolo de assinatura digital RSA é o mais amplamente adotado, sendo obsolescente como padrão. O problema é que os avanços tecnológicos impõem um aumento considerável no tamanho das chaves criptográficas para que se mantenha um nível de segurança adequado, resultando efeitos indesejáveis em tempo de processamento, largura de banda e armazenamento. Como solução imediata, temos a criptografia de curvas elípticas sendo mais adequada para utilização por órgãos públicos e empresas. Dentro do estudo de curvas elípticas, este trabalho contribui especificamente com a introdução de uma nova subfamília das curvas amigáveis a emparelhamento Barreto-Naehrig (BN). A subfamília proposta tem uma descrição computacionalmente simples, tornando-a capaz de oferecer oportunidades de implementação eficiente. A escolha das curvas BN também se baseia no fato de possibilitarem uma larga faixa de níveis práticos de segurança. A partir da subfamília introduzida foram feitas algumas implementações práticas começando com algoritmos mais básicos de operações em corpos de extensão, passando por algoritmos de aritmética elíptica e concluindo com o cálculo da função de emparelhamento. A combinação da nova subfamília BN com a adoção de técnicas de otimização, cuidadosamente escolhidas, permitiu a mais eficiente implementação do emparelhamento Ate ótimo, operação bastante útil em aplicações criptográficas práticas. / The trend for the future consists of steadfast shrinking of electrical and computing devices. In the short to medium term, one will still find constrained storage and processing resources in that environment. In the long run, as Physics, Chemistry and Microelectronics progress, the capabilities of such devices are likely to increase. In 20 to 50 years from now, until technology has firm advances, lightweight software solutions will be needed. In Brazil, the most widely adopted signature protocol, the RSA scheme, is obsolescent as a standard. The problem is that technological advances impose a considerable increase in cryptographic key sizes in order to maintain a suitable security level, bringing about undesirable effects in processing time, bandwidth occupation and storage requirements. As an immediate solution, we have the Elliptic Curve Cryptography which is more suitable for utilization in public agencies and industry. In the field of elliptic curves, this work contributes specifically with the introduction of a new subfamily of the pairing-friendly Barreto-Naehrig (BN) curves. The proposed subfamily has a computationally simple description, and makes it able to offer opportunities for efficient implementation. The choice of the BN curves is also based on the fact that they allow a range of practical security levels. Furthermore, there were made practical implementations from the introduced subfamily, like the most basic extension fields algorithms, elliptic curve arithmetic and pairing computation. The adoption of the new BN subfamily with carefully chosen optimization techniques allowed the most efficient implementation of the optimal Ate pairing, which is a very useful operation in many practical cryptographic applications.
28

Criptografia e curvas elípticas

Flose, Vania Batista Schunck [UNESP] 18 November 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-11-18Bitstream added on 2014-06-13T18:55:35Z : No. of bitstreams: 1 flose_vbs_me_rcla.pdf: 506170 bytes, checksum: ee89356ded1c14f6f5c21428bb68671a (MD5) / Com o crescimento da comunicação nos dias atuais, a segurança na troca de informa- ções tem se tornado cada vez mais importante o que tem dado destaque a Criptografia. A criptografia consiste de técnicas baseadas em conceitos matemáticos que tem por objetivo transmitir informações sigilosas forma segura através de canais monitorados por terceiros. Um ramo da Criptografia que vem crescendo está ligado ao estudo de curvas elípticas, que é uma das áreas mais ricas da matemática. O nome curvas elípticas é de certa forma enganoso, pois diferente do sentido literal da palavra, que leva a pensar em elipses, se trata de equações relacionadas a um determinado tipo de curva algébrica. Neste trabalho, as curvas elípticas serão estudadas do ponto de vista da álgebra e da teoria dos números com o objetivo de conhecer a Criptografia de Curvas Elípticas que é uma variação do Problema do Logaritmo Discreto / With the growth of communication these days, security in exchange for information has become increasingly important what has given prominence to Cryptography. Encryption techniques is based on concepts mathematical aims to transmit sensitive information securely through channels monitored by third parties. A branch of cryptography that has growing up is connected to the study of elliptic curves, which is one of the most rich mathematics. The name elliptic curves is somewhat misleading, as di erent from the literal sense of the word, which makes one think of ellipses if equations is related to a certain type of algebraic curve. in this work, elliptic curves are studied from the viewpoint of algebra and of number theory in order to know the Curve Cryptography Elliptic is a variation of the discrete logarithm problem
29

Idempotentes em Álgebras de Grupos e Códigos Abelianos Minimais

Assis, Ailton Ribeiro de 09 September 2011 (has links)
Made available in DSpace on 2015-05-15T11:46:11Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 411324 bytes, checksum: 65de8bf46cc2dff58911edbcb15868ca (MD5) Previous issue date: 2011-09-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work, we study the semisimple group algebras FqCn of the finite abelian groups Cn over a finite field Fq and give conditions so that the number of its simple components is minimal; i.e. equal to the number of simple components of the rational group algebra of the same group. Under such conditions, we compute the set of primitive idempotents of FqCn and from there, we study the abelian codes as minimal ideals of the group algebra, which are generated by the primitive idempotents, computing their dimension and minimum distances. / Neste trabalho, estudamos álgebras de grupos semisimples FqCn de grupos abelianos finitos Cn sobre um corpo finito Fq e as condições para que o número de componentes simples seja mínimo, ou seja igual ao número de componentes simples sobre a álgebra de grupos racionais do mesmo grupo. Sob tais condições, calculamos o conjunto de idempotentes primitivos de FqG e a de partir daí, estudamos os códigos cíclicos como ideais minimais da álgebra de grupo, os quais são gerados pelos idempotentes primitivos, calculando suas dimensões e distâncias mínimas.
30

Sobre o numero de pontos racionais de curvas sobre corpos finitos / On the number of rational points of curves over finite fields

Castilho, Tiago Nunes, 1983- 19 March 2008 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T15:12:25Z (GMT). No. of bitstreams: 1 Castilho_TiagoNunes_M.pdf: 813127 bytes, checksum: 313e9951b003dcd0e0876813659d7050 (MD5) Previous issue date: 2008 / Resumo: Nesta dissertacao estudamos cotas para o numero de pontos racionais de curvas definidas sobre corpos finitos tendo como ponto de partida a teoria de Stohr-Voloch / Abstract: In this work we study upper bounds on the number of rational points of curves over finite fields by using the Stohr-Voloch theory / Mestrado / Algebra Comutativa, Geometria Algebrica / Mestre em Matemática

Page generated in 0.0561 seconds