• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Order Aggressiveness of Informed Traders under Different Competitions of Trading and Correlations of Information

Wu, Po-ting 28 July 2011 (has links)
This paper refers to Ma and Hung(2004) using the amount of the institutional investors to measure the competitions of trading and the order flows of the institutional investors to measure correlations of information. We filter the data on daily basis and divide the data into four groups: high competition and high correlation, high competition and low correlation, low competition and high correlation, and low competition and low correlation. From the measurements of the informed traders¡¦ intraday behavior, we find that in the sample of high competitions of trading, the informed traders trade aggressively to exploit the common private information in the early period; In the middle period, since the common private information has been revealed to the market, the informed traders trade passively to avoid other informed traders knowing his private information; In the later period, the informed trader trade aggressively again to consume their private information before the market close. So, when trading these stocks, uninformed individual investors should avoid entering the market in the early and the later periods because of the high adverse selection cost. Besides, when prior return increases (decreases), the informed traders tend to place buy (sell) orders, indicating the informed traders are momentum traders. Last but not least, we observe in the sample of low competition and low correlation, the foreign investors behave differently in intraday strategy. Given the increasing of prior return, the buy (sell) orders of the foreign investors become passive (aggressive) in the early period, but in the later period, the buy (sell) orders of the foreign investors turn to be more aggressive (passive) with the increasing of prior return. The result may relate to the strategy of proprietary traders. For this reason, when trading these stocks, uninformed individual investors should avoid following the large orders and the momentum strategy in the early period.
2

Canonical Correlation and the Calculation of Information Measures for Infinite-Dimensional Distributions: Kanonische Korrelationen und die Berechnung von Informationsmaßen für unendlichdimensionale Verteilungen

Huffmann, Jonathan 26 March 2021 (has links)
This thesis investigates the extension of the well-known canonical correlation analysis for random elements on abstract real measurable Hilbert spaces. One focus is on the application of this extension to the calculation of information-theoretical quantities on finite time intervals. Analytical approaches for the calculation of the mutual information and the information density between Gaussian distributed random elements on arbitrary real measurable Hilbert spaces are derived. With respect to mutual information, the results obtained are comparable to [4] and [1] (Baker, 1970, 1978). They can also be seen as a generalization of earlier findings in [20] (Gelfand and Yaglom, 1958). In addition, some of the derived equations for calculating the information density, its characteristic function and its n-th central moments extend results from [45] and [44] (Pinsker, 1963, 1964). Furthermore, explicit examples for the calculation of the mutual information, the characteristic function of the information density as well as the n-th central moments of the information density for the important special case of an additive Gaussian channel with Gaussian distributed input signal with rational spectral density are elaborated, on the one hand for white Gaussian noise and on the other hand for Gaussian noise with rational spectral density. These results extend the corresponding concrete examples for the calculation of the mutual information from [20] (Gelfand and Yaglom, 1958) as well as [28] and [29] (Huang and Johnson, 1963, 1962).:Kurzfassung Abstract Notations Abbreviations 1 Introduction 1.1 Software Used 2 Mathematical Background 2.1 Basic Notions of Measure and Probability Theory 2.1.1 Characteristic Functions 2.2 Stochastic Processes 2.2.1 The Consistency Theorem of Daniell and Kolmogorov 2.2.2 Second Order Random Processes 2.3 Some Properties of Fourier Transforms 2.4 Some Basic Inequalities 2.5 Some Fundamentals in Functional Analysis 2.5.1 Hilbert Spaces 2.5.2 Linear Operators on Hilbert Spaces 2.5.3 The Fréchet-Riesz Representation Theorem 2.5.4 Adjoint and Compact Operators 2.5.5 The Spectral Theorem for Compact Operators 3 Mutual Information and Information Density 3.1 Mutual Information 3.2 Information Density 4 Probability Measures on Hilbert Spaces 4.1 Measurable Hilbert Spaces 4.2 The Characteristic Functional 4.3 Mean Value and Covariance Operator 4.4 Gaussian Probability Measures on Hilbert Spaces 4.5 The Product of Two Measurable Hilbert Spaces 4.5.1 The Product Measure 4.5.2 Cross-Covariance Operator 5 Canonical Correlation Analysis on Hilbert Spaces 5.1 The Hellinger Distance and the Theorem of Kakutani 5.2 Canonical Correlation Analysis on Hilbert Spaces 5.3 The Theorem of Hájek and Feldman 6 Mutual Information and Information Density Between Gaussian Measures 6.1 A General Formula for Mutual Information and Information Density for Gaussian Random Elements 6.2 Hadamard’s Factorization Theorem 6.3 Closed Form Expressions for Mutual Information and Related Quantities 6.4 The Discrete-Time Case 6.5 The Continuous-Time Case 6.6 Approximation Error 7 Additive Gaussian Channels 7.1 Abstract Channel Model and General Definitions 7.2 Explicit Expressions for Mutual Information and Related Quantities 7.2.1 Gaussian Random Elements as Input to an Additive Gaussian Channel 8 Continuous-Time Gaussian Channels 8.1 White Gaussian Channels 8.1.1 Two Simple Examples 8.1.2 Gaussian Input with Rational Spectral Density 8.1.3 A Method of Youla, Kadota and Slepian 8.2 Noise and Input Signal with Rational Spectral Density 8.2.1 Again a Method by Slepian and Kadota Bibliography / Diese Arbeit untersucht die Erweiterung der bekannten kanonischen Korrelationsanalyse (canonical correlation analysis) für Zufallselemente auf abstrakten reellen messbaren Hilberträumen. Ein Schwerpunkt liegt dabei auf der Anwendung dieser Erweiterung zur Berechnung informationstheoretischer Größen auf endlichen Zeitintervallen. Analytische Ansätze für die Berechnung der Transinformation und der Informationsdichte zwischen gaußverteilten Zufallselementen auf beliebigen reelen messbaren Hilberträumen werden hergeleitet. Bezüglich der Transinformation sind die gewonnenen Resultate vergleichbar zu [4] und [1] (Baker, 1970, 1978). Sie können auch als Verallgemeinerung früherer Erkenntnisse aus [20] (Gelfand und Yaglom, 1958) aufgefasst werden. Zusätzlich erweitern einige der hergeleiteten Formeln zur Berechnung der Informationsdichte, ihrer charakteristischen Funktion und ihrer n-ten zentralen Momente Ergebnisse aus [45] und [44] (Pinsker, 1963, 1964). Weiterhin werden explizite Beispiele für die Berechnung der Transinformation, der charakteristischen Funktion der Informationsdichte sowie der n-ten zentralen Momente der Informationsdichte für den wichtigen Spezialfall eines additiven Gaußkanals mit gaußverteiltem Eingangssignal mit rationaler Spektraldichte erarbeitet, einerseits für gaußsches weißes Rauschen und andererseits für gaußsches Rauschen mit einer rationalen Spektraldichte. Diese Ergebnisse erweitern die entsprechenden konkreten Beispiele zur Berechnung der Transinformation aus [20] (Gelfand und Yaglom, 1958) sowie [28] und [29] (Huang und Johnson, 1963, 1962).:Kurzfassung Abstract Notations Abbreviations 1 Introduction 1.1 Software Used 2 Mathematical Background 2.1 Basic Notions of Measure and Probability Theory 2.1.1 Characteristic Functions 2.2 Stochastic Processes 2.2.1 The Consistency Theorem of Daniell and Kolmogorov 2.2.2 Second Order Random Processes 2.3 Some Properties of Fourier Transforms 2.4 Some Basic Inequalities 2.5 Some Fundamentals in Functional Analysis 2.5.1 Hilbert Spaces 2.5.2 Linear Operators on Hilbert Spaces 2.5.3 The Fréchet-Riesz Representation Theorem 2.5.4 Adjoint and Compact Operators 2.5.5 The Spectral Theorem for Compact Operators 3 Mutual Information and Information Density 3.1 Mutual Information 3.2 Information Density 4 Probability Measures on Hilbert Spaces 4.1 Measurable Hilbert Spaces 4.2 The Characteristic Functional 4.3 Mean Value and Covariance Operator 4.4 Gaussian Probability Measures on Hilbert Spaces 4.5 The Product of Two Measurable Hilbert Spaces 4.5.1 The Product Measure 4.5.2 Cross-Covariance Operator 5 Canonical Correlation Analysis on Hilbert Spaces 5.1 The Hellinger Distance and the Theorem of Kakutani 5.2 Canonical Correlation Analysis on Hilbert Spaces 5.3 The Theorem of Hájek and Feldman 6 Mutual Information and Information Density Between Gaussian Measures 6.1 A General Formula for Mutual Information and Information Density for Gaussian Random Elements 6.2 Hadamard’s Factorization Theorem 6.3 Closed Form Expressions for Mutual Information and Related Quantities 6.4 The Discrete-Time Case 6.5 The Continuous-Time Case 6.6 Approximation Error 7 Additive Gaussian Channels 7.1 Abstract Channel Model and General Definitions 7.2 Explicit Expressions for Mutual Information and Related Quantities 7.2.1 Gaussian Random Elements as Input to an Additive Gaussian Channel 8 Continuous-Time Gaussian Channels 8.1 White Gaussian Channels 8.1.1 Two Simple Examples 8.1.2 Gaussian Input with Rational Spectral Density 8.1.3 A Method of Youla, Kadota and Slepian 8.2 Noise and Input Signal with Rational Spectral Density 8.2.1 Again a Method by Slepian and Kadota Bibliography

Page generated in 0.1275 seconds