Spelling suggestions: "subject:"corrosion bmonitoring"" "subject:"corrosion cemonitoring""
1 |
Electrochemical noise and corrosion monitoring of steel in concreteSearson, P. C. January 1982 (has links)
No description available.
|
2 |
Ultrasonic guided wave testing of pipelines using a broadband excitationThornicroft, Keith January 2015 (has links)
Guided Wave Testing (GWT) is a relatively new development in non-destructive testing. Conventional Ultrasonic Testing (UT) methods are operated at high frequencies (MHz) and are capable of detecting very small (down to micrometre-scale) flaws within a range of millimetres from a transducer. GWT, however, is carried out at lower frequencies (kHz) and is capable of highlighting the position of volumetric structural detail and discontinuities, such as gross corrosion at a minimum of 9% of the cross-sectional area, tens of metres from a test location. Conventional ultrasonic testing relies on the transmission of bulk waves whereas GWT employs so-called ultrasonic guided waves (UGW). To simplify UGW inspections, several tests are conducted sequentially at a range of different excitation frequencies. The frequency bandwidth of each of these tests needs to be controlled to avoid complexities caused by the frequency dependent nature of the propagation of guided waves. This gives rise to the current GWT inspection procedure, where a number of different narrowband tests are conducted at several distinct frequencies. It is also found that different test circumstances (such as pipe coating or defect type) are inspected more easily with certain excitation frequencies than with others - and the optimum frequency can not always be predicted ahead of time. Thus, where time allows it is often beneficial to carry out a frequency sweep, whereby a large range of excitation frequencies are incrementally generated - for example, from 20 to 80kHz in 1kHz steps. This research proposes a novel approach to the existing pipeline inspection procedure by utilising the information contained within a broadband response. The overarching proposition given by this research is that the current collection procedure be entirely rewritten. This thesis will present ideas related to every area of the inspection procedure beginning with the tuning of excitation signals and concluding with recommendations on how tooling and excitation configuration can be modified to further optimise the technique for broadband excitation.
|
3 |
Long Period Grating-Based pH Sensors for Corrosion MonitoringElster, Jennifer L. 27 May 1999 (has links)
Corrosion related deterioration of aging aircraft has proven to cause reduced flight availability, service lifetime, costly repairs, and if undetected, can result in potentially unsafe operating conditions. The purpose of this research is to develop, fabricate and test optical fiber-based chemical sensors for monitoring corrosion from early stages through the entire corrosion event. Although there are several preventative methods under development to address the problem of corrosion degradation, new techniques are still needed that are cost-effective and reliable to ensure an acceptable health status determination of aging aircraft and civil infrastructure. In using optical fiber-based sensors to detect corrosion precursors such as moisture, pH, nitrates, sulfates, chlorates and corrosion related metal-ion by-products the severity of the corrosive environment can be determined allowing predictive health evaluation of the infrastructure. The long period grating (LPG) element is highly sensitive to refractive index changes and with appropriate design geometry a variety of target molecules can be detected. Optical fiber long period gratings are designed to act as spectral loss elements that couple a discrete wavelength out of the optical fiber as a function of the surrounding refractive index. By applying special coating that change refractive index with absorption of target molecules to the LPG surface, it becomes a transducer for chemical measurement. Presented in this research is the incorporation of pH-sensitive hydrogels with long period gratings for the development of a fiber optic-based pH sensor. Optical fiber-based pH sensors offer numerous advantages in wastewater monitoring, blood diagnostics, bioremediation, as well as chemical and food processing. Specifically this research focuses on pH sensors that can be multiplexed with other chemical sensors for a complete chemical analysis of the corrosive environment. / Master of Science
|
4 |
Practical vibration evaluation and early warning of damage in post-tensioned tendonsLopez-Sabando, Jaime 01 June 2007 (has links)
Severe corrosion damage and even complete failure was recently discovered in external post-tensioned (PT) tendons of three Florida's pre-cast, segmental bridges over seawater. A key deterioration factor was the formation of large bleed water grout voids at or near the anchorages. Steel corrosion may occur at the grout-void interface or in the air space of the void itself. Since the tendons are critical to the structural integrity of the bridges, reliable and non-intrusive damage detection methods are desirable to manage or prevent future occurrences. In recent years several indirect non-destructive methods have been developed or improved to evaluate the conditions of the tendons. One of those methods is vibration-based tension measurements, consisting of detecting tendon tension loss by analyzing the tendon's natural frequencies.
Until recently, vibration-based tension measurements were costly and laborious since they required several operators to conduct the tests and complicated analysis through different programs. The first objective of this research is to provide a practical, simplified, user-friendly testing and analysis method for screening tendons by vibration measurements. Electrochemical Impedance Spectroscopy, Linear Polarization, and Electrical Resistance are alternative methods that could nondestructively detect or monitor corrosion before strand failures occur. The reliability and sensitivity of these conventional monitoring methods in solid or liquid media are well proven. However, few investigations exist on applying these methods to air-space corrosion as it may occur in tendon anchors. The second objective of this research is to establish the feasibility of using the above conventional monitoring methods for detecting air-space corrosion.
In this investigation, two different types of Electrical Resistance probes were designed and evaluated. Also, electrochemical probes were constructed simulating strands conditions in the grout-void interface. Electrochemical Impedance Spectroscopy and Linear Polarization measurements were conducted in the electrochemical probes to calculate their instantaneous corrosion rates. Electrical Resistance and Electrochemical probes results indicate that both methods provide sufficient sensibility to determine the ongoing damage.
|
Page generated in 0.0697 seconds