• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Corrosão-erosão da liga Cu10Ni-3Al-1, 3Fe em presença de íons cloreto, sulfeto e sulfato. / Corrosion-erosion of Cu10Ni-3Al-1, 3Fe alloy in the solution with chloride, sulfide or sulphate ions.

Liberto, Rodrigo César Nascimento 25 March 2010 (has links)
O presente trabalho teve como objetivos determinar a resistência à corrosão e as propriedades mecânicas da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e envelhecida a 550°C. Foi também objetivo do trabalho identificar a microestrutura nestas condições de tratamento térmico. As propriedades mecânicas foram avaliadas a partir de ensaios de tração e medidas de microdureza. Para caracterizar a resistência à corrosão e corrosão-erosão, foram realizados ensaios de polarização potenciodinâmica na condição estagnada e associada à erosão em 0,01M NaCl, 0,01M Na2SO4 e 0,0001M Na2S.9H2O. Para tanto, foi necessário elaborar a liga Cu10Ni-3Al-1,3Fe, por fundição em forno do tipo mufla. O lingote obtido foi solubilizado a 900ºC e laminado a frio. Posteriormente a chapa obtida foi novamente tratada a 900ºC por 1 h para garantir uma microestrutura homogênea de fase a. A partir desta chapa foram retiradas amostras para os tratamentos térmicos de envelhecimento por até 1.032 h a 550ºC. Os exames metalográficos mostraram intensa precipitação nas condições envelhecidas. Através dos ensaios de tração e medidas de microdureza, verificou-se que a presença dos precipitados melhora significativamente as propriedades mecânicas, sendo que os valores máximos de dureza, limite de escoamento e de resistência ocorrem para o tempo de 16 h de envelhecimento. Este efeito é decorrente de duas parcelas, uma dos precipitados intergranulares que se formam num processo de precipitação celular e a outra das partículas finamente dispersas (precipitados intragranulares). Em relação a resistência à corrosão, constatou-se que a liga, em todas as condições de tratamento térmico, apresenta um potencial de quebra (Eq) quando polarizada em eletrólitos que contém cloreto, sulfato ou sulfeto. Em 0,01M NaCl, o potencial Eq está relacionado com o processo de corrosão seletiva do níquel (desniquelação). Observou-se ainda que o envelhecimento provocou um aumento nos valores de Eq, sendo mais evidente para as amostras envelhecidas por 2 e 1.032 h. Nos ensaios de corrosão-erosão (realizados apenas nas condições solubilizada e envelhecida por 16 h), também ocorre o potencial Eq, mas os valores são mais baixos. Nestes casos foram observadas cavidades, que não estão relacionadas com o processo de corrosão seletiva, mas sim com o processo de erosão. Nos eletrólitos de 0,01M Na2SO4 e 0,0001M Na2S.9H2O o potencial Eq está relacionado com a formação de cavidades (pites), e não com o processo de corrosão seletiva. Nestes eletrólitos, não foi observada qualquer dependência entre Eq e o envelhecimento da liga, diferentemente do verificado em 0,01M NaCl, onde o envelhecimento proporcionou um efeito benéfico. Igualmente, não houve diferenças significativas nos valores de Eq quando o material foi submetido à corrosão-erosão. / The present work evaluated the corrosion resistance and mechanical properties of Cu10Ni-3Al-1.3Fe cupronickel alloy, in the solution-treated and 550°C aged conditions. It was also objective of the work to identify the microstructural changes in these conditions of aging treatment. Mechanical properties were evaluated through microhardness and tension tests; to evaluate the corrosion and corrosion-erosion resistance, potenciodynamic polarization tests were done in the stagnated condition and polarization associated to erosion in 0.01M NaCl, 0.01M Na2SO4 or 0.0001M Na2S.9H2O. The alloy had been casting and solution treated at 900°C, and after that cold rolled. From cold rolled sheet, specimens were solution treated at 900°C for 1 h, and aged at 550°C until 1,032 hours. The microstructural exams showed precipitation in the aged samples. The microhardness and tension tests showed that the presence of precipitates improve the mechanical properties, and the maximum value of hardness was obtained after 16 h of aging at 550°C. This effect is related to two microstructural aspects, one regarding intergranular precipitates that were formed by cellular precipitation and other related to the presence of finely dispersed intragranular precipitation. Concerning corrosion resistance, it was verified that the alloy, in all conditions, presented a break potential (Eq) when polarized in the tested solutions. In 0.01M NaCl, Eq is related with the process of selective corrosion of the nickel (denickelification). It was observed although that aging increased the values of Eq, being more evident for the aged samples for 2 and 1,032 h. The corrosion-erosion tests (just accomplished in the conditions solution-treated and aged by 16 h), also presented Eq, but the values were lower. In these cases cavities were observed, however not related to the process of selective corrosion, but to the erosion process. The tests in 0.01M Na2SO4 or 0.0001M Na2S.9H2O showed that Eq is related with the formation of cavities (pits), and not with the process of selective corrosion. In these solutions was not observed dependence between Eq and the aging time, differently of the verified in 0.01M NaCl, where the aging provided a beneficial effect. There were not significant differences in the values of Eq when the material was submitted to the corrosion-erosion in the solutions (0.01M Na2SO4 and 0.0001M Na2S.9H2O).
2

Corrosão-erosão da liga Cu10Ni-3Al-1, 3Fe em presença de íons cloreto, sulfeto e sulfato. / Corrosion-erosion of Cu10Ni-3Al-1, 3Fe alloy in the solution with chloride, sulfide or sulphate ions.

Rodrigo César Nascimento Liberto 25 March 2010 (has links)
O presente trabalho teve como objetivos determinar a resistência à corrosão e as propriedades mecânicas da liga Cu10Ni-3Al-1,3Fe, nas condições solubilizada e envelhecida a 550°C. Foi também objetivo do trabalho identificar a microestrutura nestas condições de tratamento térmico. As propriedades mecânicas foram avaliadas a partir de ensaios de tração e medidas de microdureza. Para caracterizar a resistência à corrosão e corrosão-erosão, foram realizados ensaios de polarização potenciodinâmica na condição estagnada e associada à erosão em 0,01M NaCl, 0,01M Na2SO4 e 0,0001M Na2S.9H2O. Para tanto, foi necessário elaborar a liga Cu10Ni-3Al-1,3Fe, por fundição em forno do tipo mufla. O lingote obtido foi solubilizado a 900ºC e laminado a frio. Posteriormente a chapa obtida foi novamente tratada a 900ºC por 1 h para garantir uma microestrutura homogênea de fase a. A partir desta chapa foram retiradas amostras para os tratamentos térmicos de envelhecimento por até 1.032 h a 550ºC. Os exames metalográficos mostraram intensa precipitação nas condições envelhecidas. Através dos ensaios de tração e medidas de microdureza, verificou-se que a presença dos precipitados melhora significativamente as propriedades mecânicas, sendo que os valores máximos de dureza, limite de escoamento e de resistência ocorrem para o tempo de 16 h de envelhecimento. Este efeito é decorrente de duas parcelas, uma dos precipitados intergranulares que se formam num processo de precipitação celular e a outra das partículas finamente dispersas (precipitados intragranulares). Em relação a resistência à corrosão, constatou-se que a liga, em todas as condições de tratamento térmico, apresenta um potencial de quebra (Eq) quando polarizada em eletrólitos que contém cloreto, sulfato ou sulfeto. Em 0,01M NaCl, o potencial Eq está relacionado com o processo de corrosão seletiva do níquel (desniquelação). Observou-se ainda que o envelhecimento provocou um aumento nos valores de Eq, sendo mais evidente para as amostras envelhecidas por 2 e 1.032 h. Nos ensaios de corrosão-erosão (realizados apenas nas condições solubilizada e envelhecida por 16 h), também ocorre o potencial Eq, mas os valores são mais baixos. Nestes casos foram observadas cavidades, que não estão relacionadas com o processo de corrosão seletiva, mas sim com o processo de erosão. Nos eletrólitos de 0,01M Na2SO4 e 0,0001M Na2S.9H2O o potencial Eq está relacionado com a formação de cavidades (pites), e não com o processo de corrosão seletiva. Nestes eletrólitos, não foi observada qualquer dependência entre Eq e o envelhecimento da liga, diferentemente do verificado em 0,01M NaCl, onde o envelhecimento proporcionou um efeito benéfico. Igualmente, não houve diferenças significativas nos valores de Eq quando o material foi submetido à corrosão-erosão. / The present work evaluated the corrosion resistance and mechanical properties of Cu10Ni-3Al-1.3Fe cupronickel alloy, in the solution-treated and 550°C aged conditions. It was also objective of the work to identify the microstructural changes in these conditions of aging treatment. Mechanical properties were evaluated through microhardness and tension tests; to evaluate the corrosion and corrosion-erosion resistance, potenciodynamic polarization tests were done in the stagnated condition and polarization associated to erosion in 0.01M NaCl, 0.01M Na2SO4 or 0.0001M Na2S.9H2O. The alloy had been casting and solution treated at 900°C, and after that cold rolled. From cold rolled sheet, specimens were solution treated at 900°C for 1 h, and aged at 550°C until 1,032 hours. The microstructural exams showed precipitation in the aged samples. The microhardness and tension tests showed that the presence of precipitates improve the mechanical properties, and the maximum value of hardness was obtained after 16 h of aging at 550°C. This effect is related to two microstructural aspects, one regarding intergranular precipitates that were formed by cellular precipitation and other related to the presence of finely dispersed intragranular precipitation. Concerning corrosion resistance, it was verified that the alloy, in all conditions, presented a break potential (Eq) when polarized in the tested solutions. In 0.01M NaCl, Eq is related with the process of selective corrosion of the nickel (denickelification). It was observed although that aging increased the values of Eq, being more evident for the aged samples for 2 and 1,032 h. The corrosion-erosion tests (just accomplished in the conditions solution-treated and aged by 16 h), also presented Eq, but the values were lower. In these cases cavities were observed, however not related to the process of selective corrosion, but to the erosion process. The tests in 0.01M Na2SO4 or 0.0001M Na2S.9H2O showed that Eq is related with the formation of cavities (pits), and not with the process of selective corrosion. In these solutions was not observed dependence between Eq and the aging time, differently of the verified in 0.01M NaCl, where the aging provided a beneficial effect. There were not significant differences in the values of Eq when the material was submitted to the corrosion-erosion in the solutions (0.01M Na2SO4 and 0.0001M Na2S.9H2O).
3

Estudo do desgaste erosivo-corrosivo de aços inoxidáveis de alto nitrogênio em meio lamacento. / Erosion-corrosion wear of high nitrogen stainless steels in a slurry.

López Ochoa, Diana Maria 23 November 2007 (has links)
Os processos de erosão-corrosão são comumente encontrados em tubulações, válvulas e outros componentes usados na indústria química, petroquímica e na exploração de minérios. Quando a corrosão e a erosão atuam conjuntamente, os mecanismos de dano são complexos e em geral as perdas de massa associadas com esta combinação de processos são maiores do que a soma das perdas geradas pela erosão ou a corrosão atuando separadamente. Os aços inoxidáveis são materiais amplamente usados neste tipo de indústrias. A série martensítica é usada quando se necessita de boas propriedades mecânicas e moderada resistência à corrosão, enquanto que a austenítica é usada para condições onde é necessária uma boa resistência à corrosão, ainda que as propriedades mecânicas deste tipo de aço não sejam muito altas. Adições de nitrogênio aos aços inoxidáveis melhoram tanto a resistência à corrosão quanto a resistência mecânica, no entanto, poucos trabalhos têm sido desenvolvidos sobre o sinergismo erosão-corrosão dos aços inoxidáveis de alto nitrogênio. Neste trabalho, estuda-se o efeito da adição de nitrogênio, em solução sólida, na resistência à erosão-corrosão de um aço inoxidável martensítico AISI 410 e um austenítico AISI 304L em lama composta por 3,5% de NaCl e partículas de quartzo. Para tanto foram nitretadas, em alta temperatura, amostras destes aços sob diferentes pressões. Foram obtidas amostras martensíticas com 0,2 e 0,4% de nitrogênio e austeníticas com 0,25 e 0,55% de nitrogênio em solução sólida. Amostras sem nitrogênio foram usadas como material de referência. Foram desenvolvidos dois tipos de ensaios em dispositivo tipo jato: medidas de perda de massa e de polarização potenciodinâmica. A topografia das superfícies testadas foi observada usando microscopia óptica e eletrônica de varredura. Essa informação, conjuntamente com os resultados de perda de massa e dos ensaios eletroquímicos, foi usada para estabelecer os mecanismos de degradação dos materiais estudados, nas diferentes condições de ensaio, e os efeitos da introdução de nitrogênio na estrutura dos aços. Dos resultados obtidos neste trabalho, observa-se que as curvas de polarização potenciodinâmica são sensíveis às variações nas condições de ensaio, como a presença de fluxo e a introdução de partículas. Em geral, o potencial de corrosão e de pite diminuíram e a densidade de corrente passiva aumentou com o aumento da agressividade do ensaio, deslocando as curvas para potenciais menos nobres e densidades de corrente maiores. A introdução de nitrogênio aumentou a dureza da superfície em ambos os aços inoxidáveis. A adição de nitrogênio melhorou a resistência à corrosão do aço inoxidável martensítico AISI 410, para as duas condições de nitretação usadas, medida através de polarização potenciodinâmica. Esse efeito foi avaliado através de um novo parâmetro chamado ?, dado pela diferença entre as densidades de corrente com erosão-corrosão e na condição estática (iCE-iS), para o aço nitretado, e essa mesma diferença para a condição de referência (aço solubilizado ou temperado e revenido). A adição de 0,2% de nitrogênio diminuiu em 88% a corrosão aumentada por erosão. Aumentando a 0,4% o teor de nitrogênio, esta diminuição também ocorre, sendo de 87%. O processo de remoção de material da superfície do aço inoxidável martensítico temperado e revenido é dominado pela corrosão aumentada por erosão, enquanto que no aço nitretado, o nitrogênio promove a mudança de regime para uma condição de erosão aumentada por corrosão. Observou-se que a adição de nitrogênio melhorou a resistência à corrosão, a resistência à erosão e a resistência à erosão-corrosão do aço inoxidável austenítico AISI 304L. Notou-se, também, o aumento significativo do potencial de pite com a elevação do teor de nitrogênio. As superfícies das marcas de desgaste das amostras nitretadas mostraram-se menos rugosas, mostrando o efeito benéfico do nitrogênio na resistência à corrosão do aço austenítico. A adição de 0,25% de nitrogênio diminuiu em 25% a corrosão aumentada por erosão. Aumentando o teor de nitrogênio para 0,55%, esta diminuição também foi observada, sendo de 56%. O processo de remoção de material da superfície do aço inoxidável austenítico é dominado pelo desgaste erosivo. Finalmente, a introdução de nitrogênio parece não ter influência notável no potencial de corrosão para nenhum dos aços aqui estudados. O mecanismo fundamental para a melhora na resistência à corrosão com a introdução de nitrogênio na estrutura dos aços inoxidáveis estudados, está relacionado com a produção de íons amônio durante a dissolução da superfície, produzindo um aumento de pH da solução e possibilitando uma repassivação mais fácil da superfície. / Corrosion-erosion processes are commonly found in pipes, valves and many other components for chemical, petrochemical and marine applications. When corrosion and erosion act together the damage mechanisms are complex and usually the mass losses are higher than the sum of the separate material losses due to corrosion and erosion. Stainless steels have been widely used in different components working in systems under combined corrosive and erosive effects. Martensitic stainless steels are suitable for manufacturing components with high mechanical properties and moderate corrosion resistance, while austenitic stainless steels are chosen for conditions where a better corrosion resistance is needed, even though their mechanical properties are poor. It has been shown that nitrogen addition to conventional stainless steels can improve both mechanical and corrosion properties. Very few research papers have been published about the corrosion-erosion synergism of high nitrogen stainless steels. In this research, the effect of nitrogen, introduced by solid state alloying, on the corrosionerosion resistance of a martensitic and an austenitic stainless steel tested in 3.5% NaClquartz slurry was studied. For this purpose, AISI 304L and AISI 410 samples were high temperature gas nitrided under different nitrogen pressures. 0.2 and 0.4% N martensitic samples and 0.25 and 0.55% N austenitic samples were obtained. Samples without nitrogen, but submitted to the same thermal cycle, were used as comparison materials in the tests. Corrosion, erosion and corrosion-erosion tests were conducted in a jet-like device. Two kinds of tests were developed: mass loss measurements and electrochemical polarization. The topography of the surface was observed after the wear tests using optical and scanning electron microscopy. This information, together with the results of mass losses and electrochemical tests were used to establish the degradation mechanisms of the tested materials under the different testing conditions and the effect of the introduction of nitrogen in the steel structure. The results showed that the polarization curves change a lot with the testing conditions. The corrosion and pitting potential decreased and the passive current density increased with the increase of aggressiveness of the testing conditions, shifting the curves to less noble potentials and higher current densities. Nitrogen additions increased the hardness of the nitrided surfaces in both steels. Nitrogen also improved the corrosion resistance of the AISI 410 stainless steel for both nitriding conditions. The effect of nitrogen was analyzed through a new parameter ?, given by the difference between the current densities under erosion-corrosion and the static condition (iCEiS), for the nitrided steels and the same difference for the standard condition (solubilized or quenched and tempered steels). The increase of the nitrogen content of the martensitic surface up to 0.2% reduced 88% the corrosion augmented by erosion. When the nitrogen content at the surface is 0.4%, the reduction of the corrosion augmented by erosion term was 87%. The mass removal process for the quenched and tempered condition is controlled by corrosion assisted by erosion, while for the nitrided surface is erosion assisted by corrosion. Nitrogen additions improved the corrosion, erosion and erosion-corrosion resistance of the austenitic stainless steel AISI 304L. The pitting potential noticeably increased with the increase of the nitrogen content. Smoother wear mark contours on the nitrided surface indicate a favorable effect of nitrogen on the corrosion-erosion synergism. Adding 0.25% N to the alloy decreased the corrosion augmented by erosion in the passive region by 25%, and adding 0.55% N reduced it by 56%. The mass removal process, in this case, was controlled by erosion. Finally, nitrogen addition does not seem to affect the corrosion potential of both steels studied in this work. The main mechanism to increase the corrosion resistance of the studied steels with the introduction of nitrogen is related to production of ammonia during the dissolution of the steel surface. The pH of the solution increases, and the surface can easily repassivate.
4

Estudo do desgaste erosivo-corrosivo de aços inoxidáveis de alto nitrogênio em meio lamacento. / Erosion-corrosion wear of high nitrogen stainless steels in a slurry.

Diana Maria López Ochoa 23 November 2007 (has links)
Os processos de erosão-corrosão são comumente encontrados em tubulações, válvulas e outros componentes usados na indústria química, petroquímica e na exploração de minérios. Quando a corrosão e a erosão atuam conjuntamente, os mecanismos de dano são complexos e em geral as perdas de massa associadas com esta combinação de processos são maiores do que a soma das perdas geradas pela erosão ou a corrosão atuando separadamente. Os aços inoxidáveis são materiais amplamente usados neste tipo de indústrias. A série martensítica é usada quando se necessita de boas propriedades mecânicas e moderada resistência à corrosão, enquanto que a austenítica é usada para condições onde é necessária uma boa resistência à corrosão, ainda que as propriedades mecânicas deste tipo de aço não sejam muito altas. Adições de nitrogênio aos aços inoxidáveis melhoram tanto a resistência à corrosão quanto a resistência mecânica, no entanto, poucos trabalhos têm sido desenvolvidos sobre o sinergismo erosão-corrosão dos aços inoxidáveis de alto nitrogênio. Neste trabalho, estuda-se o efeito da adição de nitrogênio, em solução sólida, na resistência à erosão-corrosão de um aço inoxidável martensítico AISI 410 e um austenítico AISI 304L em lama composta por 3,5% de NaCl e partículas de quartzo. Para tanto foram nitretadas, em alta temperatura, amostras destes aços sob diferentes pressões. Foram obtidas amostras martensíticas com 0,2 e 0,4% de nitrogênio e austeníticas com 0,25 e 0,55% de nitrogênio em solução sólida. Amostras sem nitrogênio foram usadas como material de referência. Foram desenvolvidos dois tipos de ensaios em dispositivo tipo jato: medidas de perda de massa e de polarização potenciodinâmica. A topografia das superfícies testadas foi observada usando microscopia óptica e eletrônica de varredura. Essa informação, conjuntamente com os resultados de perda de massa e dos ensaios eletroquímicos, foi usada para estabelecer os mecanismos de degradação dos materiais estudados, nas diferentes condições de ensaio, e os efeitos da introdução de nitrogênio na estrutura dos aços. Dos resultados obtidos neste trabalho, observa-se que as curvas de polarização potenciodinâmica são sensíveis às variações nas condições de ensaio, como a presença de fluxo e a introdução de partículas. Em geral, o potencial de corrosão e de pite diminuíram e a densidade de corrente passiva aumentou com o aumento da agressividade do ensaio, deslocando as curvas para potenciais menos nobres e densidades de corrente maiores. A introdução de nitrogênio aumentou a dureza da superfície em ambos os aços inoxidáveis. A adição de nitrogênio melhorou a resistência à corrosão do aço inoxidável martensítico AISI 410, para as duas condições de nitretação usadas, medida através de polarização potenciodinâmica. Esse efeito foi avaliado através de um novo parâmetro chamado ?, dado pela diferença entre as densidades de corrente com erosão-corrosão e na condição estática (iCE-iS), para o aço nitretado, e essa mesma diferença para a condição de referência (aço solubilizado ou temperado e revenido). A adição de 0,2% de nitrogênio diminuiu em 88% a corrosão aumentada por erosão. Aumentando a 0,4% o teor de nitrogênio, esta diminuição também ocorre, sendo de 87%. O processo de remoção de material da superfície do aço inoxidável martensítico temperado e revenido é dominado pela corrosão aumentada por erosão, enquanto que no aço nitretado, o nitrogênio promove a mudança de regime para uma condição de erosão aumentada por corrosão. Observou-se que a adição de nitrogênio melhorou a resistência à corrosão, a resistência à erosão e a resistência à erosão-corrosão do aço inoxidável austenítico AISI 304L. Notou-se, também, o aumento significativo do potencial de pite com a elevação do teor de nitrogênio. As superfícies das marcas de desgaste das amostras nitretadas mostraram-se menos rugosas, mostrando o efeito benéfico do nitrogênio na resistência à corrosão do aço austenítico. A adição de 0,25% de nitrogênio diminuiu em 25% a corrosão aumentada por erosão. Aumentando o teor de nitrogênio para 0,55%, esta diminuição também foi observada, sendo de 56%. O processo de remoção de material da superfície do aço inoxidável austenítico é dominado pelo desgaste erosivo. Finalmente, a introdução de nitrogênio parece não ter influência notável no potencial de corrosão para nenhum dos aços aqui estudados. O mecanismo fundamental para a melhora na resistência à corrosão com a introdução de nitrogênio na estrutura dos aços inoxidáveis estudados, está relacionado com a produção de íons amônio durante a dissolução da superfície, produzindo um aumento de pH da solução e possibilitando uma repassivação mais fácil da superfície. / Corrosion-erosion processes are commonly found in pipes, valves and many other components for chemical, petrochemical and marine applications. When corrosion and erosion act together the damage mechanisms are complex and usually the mass losses are higher than the sum of the separate material losses due to corrosion and erosion. Stainless steels have been widely used in different components working in systems under combined corrosive and erosive effects. Martensitic stainless steels are suitable for manufacturing components with high mechanical properties and moderate corrosion resistance, while austenitic stainless steels are chosen for conditions where a better corrosion resistance is needed, even though their mechanical properties are poor. It has been shown that nitrogen addition to conventional stainless steels can improve both mechanical and corrosion properties. Very few research papers have been published about the corrosion-erosion synergism of high nitrogen stainless steels. In this research, the effect of nitrogen, introduced by solid state alloying, on the corrosionerosion resistance of a martensitic and an austenitic stainless steel tested in 3.5% NaClquartz slurry was studied. For this purpose, AISI 304L and AISI 410 samples were high temperature gas nitrided under different nitrogen pressures. 0.2 and 0.4% N martensitic samples and 0.25 and 0.55% N austenitic samples were obtained. Samples without nitrogen, but submitted to the same thermal cycle, were used as comparison materials in the tests. Corrosion, erosion and corrosion-erosion tests were conducted in a jet-like device. Two kinds of tests were developed: mass loss measurements and electrochemical polarization. The topography of the surface was observed after the wear tests using optical and scanning electron microscopy. This information, together with the results of mass losses and electrochemical tests were used to establish the degradation mechanisms of the tested materials under the different testing conditions and the effect of the introduction of nitrogen in the steel structure. The results showed that the polarization curves change a lot with the testing conditions. The corrosion and pitting potential decreased and the passive current density increased with the increase of aggressiveness of the testing conditions, shifting the curves to less noble potentials and higher current densities. Nitrogen additions increased the hardness of the nitrided surfaces in both steels. Nitrogen also improved the corrosion resistance of the AISI 410 stainless steel for both nitriding conditions. The effect of nitrogen was analyzed through a new parameter ?, given by the difference between the current densities under erosion-corrosion and the static condition (iCEiS), for the nitrided steels and the same difference for the standard condition (solubilized or quenched and tempered steels). The increase of the nitrogen content of the martensitic surface up to 0.2% reduced 88% the corrosion augmented by erosion. When the nitrogen content at the surface is 0.4%, the reduction of the corrosion augmented by erosion term was 87%. The mass removal process for the quenched and tempered condition is controlled by corrosion assisted by erosion, while for the nitrided surface is erosion assisted by corrosion. Nitrogen additions improved the corrosion, erosion and erosion-corrosion resistance of the austenitic stainless steel AISI 304L. The pitting potential noticeably increased with the increase of the nitrogen content. Smoother wear mark contours on the nitrided surface indicate a favorable effect of nitrogen on the corrosion-erosion synergism. Adding 0.25% N to the alloy decreased the corrosion augmented by erosion in the passive region by 25%, and adding 0.55% N reduced it by 56%. The mass removal process, in this case, was controlled by erosion. Finally, nitrogen addition does not seem to affect the corrosion potential of both steels studied in this work. The main mechanism to increase the corrosion resistance of the studied steels with the introduction of nitrogen is related to production of ammonia during the dissolution of the steel surface. The pH of the solution increases, and the surface can easily repassivate.
5

Avaliação da resistência à corrosão do aço carbono ASTM 572 Gr50 exposto a óleo cru, água do mar e misturas de óleo/água do mar em condições estáticas e dinâmicas

MÁRQUEZ, Marcy Viviana Chiquillo 01 November 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-04-19T19:20:06Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação completa (FINAL).pdf: 5768431 bytes, checksum: 342e336553ff7aabb5d24cb8e9437063 (MD5) / Made available in DSpace on 2017-04-19T19:20:06Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Dissertação completa (FINAL).pdf: 5768431 bytes, checksum: 342e336553ff7aabb5d24cb8e9437063 (MD5) Previous issue date: 2016-11-17 / CAPES / Nas diversas etapas processuais da indústria de petróleo – extração, recuperação, armazenamento, transporte e refino, os materiais metálicos são expostos a fluidos corrosivos e solicitações mecânicas. Na etapa de armazenamento, em tanques de petróleo, é possível evidenciar a presença de duas fases, uma oleosa e outra aquosa, que de forma isolada ou associada podem influenciar no processo corrosivo. No transporte de petróleo, apresenta-se o efeito de corrosão-erosão (C-E) gerado pela presença de sais, gases e partículas sólidas que prejudicam a integridade dos equipamentos. Este trabalho teve como objetivo avaliar o comportamento do aço ASTM 572 Gr50 exposto a óleo cru, água do mar e misturas desses fluidos em diferentes proporções; sob condições estáticas simulando tanques de armazenamento e dinâmicas, visando simular transporte dos fluidos. Foram realizados testes de imersão do aço em diferentes fluidos corrosivos (óleo cru, água do mar, misturas de óleo e água do mar nas proporções de 20 e 50 % em volume de água do mar), ao longo de 60 dias em condições estáticas e dinâmicas. O processo corrosivo do material exposto aos diferentes meios foi analisado através de ensaios de perda de massa, análises eletroquímicas de potencial de circuito aberto (PCA), polarização potenciodinâmica e espectroscopia de impedância eletroquímica (EIE). A morfologia da corrosão foi avaliada através de microscopia eletrônica de microscopia óptica (MO) e varredura (MEV). Testes de microdureza Vickers e análises microestruturais foram realizados para analisar a ocorrência de mudanças nas propriedades mecânicas dos aços. Os resultados evidenciaram a influência do teor de água do mar no processo corrosivo, onde foram observados maiores valores de taxa de corrosão para os sistemas contendo maior proporção de água do mar. O mecanismo de C-E, observado nos sistemas dinâmicos mostrou ser mais agressivo que o processo de corrosão isoladamente (sistemas estáticos) o que foi observado por meio dos maiores valores de taxa de corrosão e também pelas morfologias de processo de deterioração da superfície vista por MO e MEV, onde cavidades de maior longitude e pites internos foram observados para os sistema sujeitos ao processo de C-E. Não foram observadas mudanças significativas na microestrutura do material após exposição às condições de fluido estudadas. Os resultados de MEV mostraram a presença de corrosão localizada em todos os sistemas, inclusive para os sistemas contendo apenas óleo cru, que apresentou baixa taxa de corrosão. Os ensaios eletroquímicos de PCA, polarização e EIE realizados com os eletrólitos advindos dos ensaios de imersão (fase aquosa) mostraram que o contato entre fluidos distintos (óleo e água do mar) sob condições de agitação, promove uma intensa troca composicional entre os meios, aumentando a agressividade e modificando a interação metal/meio. O eletrólito proveniente do sistema dinâmico contendo mistura de óleo e água do mar (50%) foi o que se mostrou mais agressivo, visto que no ensaio de polarização linear apresentou o maior valor de densidade de corrente anódica. / In the various procedural stages of the oil industry - extraction, recovery, storage, transportation and refining, metal materials are exposed to corrosive fluids and mechanical stresses. In oil tanks of the storage step, it is possible to demonstrate the presence of two phases, an oily and other aqueous, which isolated or associated, can influence the corrosion process. In the oil transport the corrosion-erosion (C-E) effect is present and it is generated by the presence of salts, gases and solid particles that can influence the integrity of the equipment. This study aimed to evaluate the behavior of ASTM 572 GR50 steel exposed to crude oil, sea water and mixtures of these fluids in different proportions; under static conditions simulating storage tanks and dynamic conditions, aiming to simulate fluid transport. Immersion tests were performed in different corrosive fluids (crude oil, seawater, oil mixtures and sea water in the proportions of 20 to 50% by seawater volume) for 60 days, under static conditions and dynamics. The corrosive process of material exposed to different media was analyzed by mass loss tests and electrochemical analysis of open circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The morphology of corrosion was assessed by microscopy optical (OM) and scanning electron microscopy (SEM). Vickers microhardness testing and microstructure analysis were performed to examine the changes occurring in the mechanical properties of steels. The results showed the influence of the seawater content in the corrosion process, in which were observed higher corrosion rate values for the systems containing higher proportion of seawater. The C-E mechanism, seen in dynamical systems proved to be more aggressive than corrosion process isolated (static systems) which was observed by means of higher corrosion rate values and also by the morphologies of the surface deterioration process seen by OM and SEM, where the greater length and internal cavities pits were observed for the system subject to the C-E process; There were not significant changes in the microstructure of the material after exposure to conditions fluid studied. SEM results showed the presence of localized corrosion on all systems, including systems containing only crude oil, which showed low corrosion rate. Electrochemical test OCP, polarization and EIS conducted with electrolytes arising from immersion tests (aqueous phase), showed that the contact between different fluids (oil and seawater) under agitation conditions, promotes an intense exchange compositional between the fluids, increasing the aggressiveness and modifying the metal/media interaction. The electrolyte from the dynamic system containing a mixture of oil and seawater (50%) was the more aggressive electrolyte, as can be seen in the linear polarization that showed the highest value of anodic current density.
6

CFD Results Used in the Design Process of the SEFACE Facility : KTH Master's Thesis Report

Torkelson, Nathaniel January 2022 (has links)
This project uses CFD analysis to make design choices for a facility to test flow accelerated lead corrosion erosion of steel samples. Two conceptual designs are considered and compared through mechanical and physical criteria. The first design uses steel samples on stationary plates next to rotating discs. The second design has the steel samples on the rotating disc. The first design is considered unfeasible due to high pressure gradients in the system and a high power requirement from the motor. The second design removes the issue of high pressure gradients and can decrease the motor requirements. This design is selected for further analysis and discussion of manufacturing. / Detta projekt använder CFD-analys för att göra designval för en anläggning för att testa flödesaccelererad blykorrosionserosion av stålprover. Två konceptuella konstruktioner beaktas och jämförs genom mekaniska och fysiska kriterier. Den första designen använder stålprover på stationära plattor bredvid roterande skivor. Den andra designen har stålproverna på den roterande skivan. Den första konstruktionen anses vara ogenomförbar på grund av höga tryckgradienter i systemet och ett högt effektbehov från motorn. Den andra designen tar bort problemet med höga tryckgradienter och kan minska motorkraven. Denna design är vald för vidare analys och diskussion om tillverkning.

Page generated in 0.0943 seconds