• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 9
  • 9
  • 6
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 128
  • 44
  • 16
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

NUMERICAL INVESTIGATION OF LAMINAR FORCED CONVECTION IN TWO-DIMENSIONAL AND THREE-DIMENSIONAL SINUSOIDAL CORRUGATED DUCTS

KUNDU, JAYDEEP 11 October 2001 (has links)
No description available.
62

Field performance of corrugated plastic pipes under simulated high soil cover

Fernando, Mihindukulasooriya E. R. January 1992 (has links)
No description available.
63

Experimental and theoretical analysis of the buried corrugated plastic pipe

Liu, Xuegang January 1993 (has links)
No description available.
64

Experimental and numerical investigation of a deeply buried corrugated steel multi plate pipe

Moreland, Andrew January 2004 (has links)
No description available.
65

Analysis of a corrugated metal box type culvert

Oh, Saekyung January 1989 (has links)
No description available.
66

Numerical Investigations of Corrugated Structural Plate Pipe

White, Kevin E. 25 April 2011 (has links)
No description available.
67

The Study of Architectured Materials with a Corrugated Geometry

Fraser, Mark 11 1900 (has links)
Compared to materials with a straight geometry, materials with a corrugated architecture have shown potential to improve ductility without sacrificing strength due to the unbending of the corrugation during loading. The purpose of this research was to study the effect of geometric and material parameters on the stress-strain response of materials with a corrugated geometry and understand what controls the unbending process and under what conditions improved ductility was achievable. This involved studying isolated corrugations and corrugation reinforced composites under tensile and transverse compressive loading by performing parametric studies using Finite Element Modeling (FEM) simulations. These simulations showed that improvements in ductility are directly related to the degree of corrugation present and can be attributed to an initial bending dominated process. The unbending of the corrugation leads to an evolving geometry which causes the material to strengthen and ultimately delays necking. For corrugated composites, it was found that there is significant interplay between the properties of the components and the geometry of the corrugation. To obtain a benefit in ductility through corrugation, the matrix must have sufficiently high work hardening to accommodate the unbending corrugation without itself necking, but also have sufficiently low flow stress relative to the reinforcement yield strength to prevent the corrugation from stretching instead of unbending. Also, if the boost in work hardening from unbending occurs too early, no gain in ductility is achieved. In addition to these findings, tools for predicting the strength and ductility of these materials were developed, including an analytical model for the isolated corrugations and a series of benefit maps and surfaces for the corrugated composites. These tools proved to be fairly effective. Finally, the FEM findings were compared to experimental stress-strain curves and strain maps for validation and showed relatively good qualitative agreement. / Thesis / Doctor of Philosophy (PhD) / It is uncommon to find a material that possesses both high strength as well as the ability to elongate a lot without failing. One way to achieve this combination of properties is to use a wavy or corrugated structure that provides increased elongation when loaded due to the straightening of the corrugation. The purpose of this thesis was to study how materials which possess a wavy or corrugated geometry behave when they are subjected to a stretching load. This research utilized computer simulations and simple experimental testing to evaluate both isolated corrugations and corrugations embedded in another material. It was found that the amount of improvement in elongation is dependent on the initial amount of waviness. Also, whether a material shows improved elongation depends on whether the corrugation is able to unbend, which in turn depends on the corrugation geometry and the relative mechanical properties of the two materials.
68

Sound Generation By Flow Over Multiple Shallow Cavities

Shaaban, Ayman January 2018 (has links)
Corrugated pipes are widely used in offshore gas and oil fields for their flexibility while offering local rigidity. However, self-sustained pressure pulsations associated with the flow in corrugated pipes results in a noisy environment, high running costs and eventually structure fatigue failure upon long exposure. Recent literature has addressed either the flow over a single cavity or the global oscillations. The current research aims at understanding the flow over multiple cavities as a first step to correlate the rich single cavity literature and the actual corrugated pipe problem with the ultimate goal of predicting oscillations amplitude in corrugate pipes. The standing wave method (SWM), which is an efficient experimental tool, has been successfully adapted in the first phase of the project to measure the source of multiple cavity configurations. One, two and three-cavity configurations have been investigated by means of the SWM. The source non-linearly becomes more pronounced as the number of cavities increases. The cavity length (L) is still found to be the appropriate length scale to define the oscillation dimensionless frequency (the Strouhal number). The measured source data have been successfully employed in a semi-empirical model to predict the amplitude of the self-excited oscillations. Accurate model performance is achieved for the single, double and triple cavity configurations. Including the absorption losses at the cavity corners has been found to be crucial for the model prediction accuracy. The separation distance (Lp) effect on the generated source is investigated for two and three-cavity configurations using the SWM over a practical range of spacing ratios. At extremum spacing ratios of (Lp/L) 0.5 and 1.375, constructive hydrodynamic interference associated with strong sources has been observed. At high excitation levels the source consistently becomes weaker upon increasing the spacing ratio. The reported trends are consistent for both the double and triple cavity configurations. However, the destructive interference spacing ratio is found to depend on the number of cavities indicating a relatively more complicated interaction mechanism. The different interaction patterns have been analytically interpreted based on the synchronization of the hydrodynamic cycle of the cavity shear layer and the disturbance convection along the pipe spacing between the cavities. Moreover, the three-cavity constructive interference cases have been visualized using Particle Image Velocimetry (PIV). The source evaluated based on the PIV data and applying Howe’s analogy revealed each cavity share of the global source, which fairly agrees with the SWM measured source. The source contribution due to gradually increasing the number of cavities is investigated using the SWM up to a six-cavity configuration. The source contribution reaches asymptotically a consistent value starting from the fourth cavity. This persistent contribution defines a building unit cavity source which is representative of a general cavity in a long corrugated pipe. The building unit source fairly agrees with the ninth-cavity source in a twelve-cavity configuration extracted by means of the PIV technique. Finally, a predication model, based on the building unit source, successfully predicts the oscillations amplitude of a twelve-cavity configuration, which serves as a model for a corrugated pipe section. / Thesis / Doctor of Philosophy (PhD)
69

Investigation of the Environmental Effect of Unit Load Design Optimization Using Physical Interaction Between Pallets and Corrugated Boxes

Kim, Saewhan 12 August 2022 (has links)
Packaging sustainability has become one of the most notable issues of this era. Many researchers have endeavored to characterize or compare the environmental burdens of a single level of packaging, such as primary, secondary, or tertiary packaging. However, goods are often handled, stored, and transported through the supply chain system in unit load form consisting of pallets, corrugated boxes, and load stabilizers. Hence, it is important to holistically understand the environmental impact of not only individual packaging levels, but also the unit load form. We can use the interactions between the unit load components to reduce the environmental burdens generated in the supply chain system. Past studies discovered that pallet top deck thickness has a huge effect on corrugated box compression strength. Using this knowledge, researchers were able to optimize the cost of unit loads by increasing pallet top deck thickness and reducing the board grade of corrugated boxes. This study (1) further discovered how different unit load design factors, such as initial top deck thickness, pallet wood species, box size, and board grade, affect the performance of the previously proposed unit load design optimization method, and (2) we investigated if the unit load optimization method could also enhance unit load sustainability. The study's first phase identified that the benefits of increasing top deck thickness were more pronounced as the initial top deck thickness decreased, higher board grade boxes were initially utilized, and smaller-sized boxes were used. The second phase of this study showed that increasing top deck thickness and reducing the board grade of corrugated boxes could offset environmental impacts by as much as 23%. Environmental benefits were mostly achieved by reducing the amount of relatively more-processed materials in the corrugated boards. This phase also provided preliminary unit load conditions as guidance for unit load professionals to estimate the possibility of optimizing their unit load design in an environmentally beneficial way. / Master of Science / Sustainability-minded individuals, industries, and policymakers recently recognized the environmental burdens associated with packaging as a critical concern to society. Many initiatives and studies have been conducted to prevent and reduce the environmental impacts of individual packaging systems, such as corrugated boxes, plastic bottles, and pallets. However, not many efforts have been made to enhance the environmental performance of a whole unit load, which is the most common distribution packaging form used to transport and store goods. It is essential to understand the physical interactions between unit load components, such as corrugated boxes and pallets, in order to improve a unit load's environmental performance effectively. The unit load optimization concept introduced in the past study, which showed that increasing top deck thickness can reduce the needed board grade of corrugated boxes, was further investigated and utilized in this study to offset the environmental burdens of a unit load by substituting different materials used. To assess the environmental performance of that unit load design optimization method, this study first endeavored to understand further how various unit load design factors could affect the result of unit load optimization, and second, we analyzed many different scenarios using a life cycle analysis method. The study found that the unit load design method that uses deck board thickness to change the amount of corrugated board needed had more potential for lighter pallets with thinner deck boards carrying heavier loads. The results also showed that increasing top deck board thickness and reducing the board grade of the corrugated board could improve the environmental performance of a unit load when the corrugated material is sufficiently substituted with a reasonable amount of pallet material.
70

The Effect of Pallet Top Deck Stiffness on the Compression Strength of Asymmetrically Supported Corrugated Boxes

Quesenberry, Chandler Blake 18 March 2020 (has links)
During unitized shipment, the components of unit loads are interacting with each other. During floor stacking of unit loads, the load on the top of the pallet causes the top deck of the pallet to bend which creates an uneven top deck surface resulting in uneven, or asymmetrical support of the corrugated boxes. This asymmetrical support could significantly affect the strength of the corrugated boxes, and it depends on the top deck stiffness of the pallet. This study is aimed at investigating how the variations of pallet top deck stiffness and the resulting asymmetric support, affects corrugated box compression strength. Pallet top deck stiffness was determined to have a significant effect on box compression strength. There was a 27-37% increase in box compression strength for boxes supported by high stiffness pallets in comparison to low stiffness pallets. The fact that boxes were weaker on low stiffness pallets could be explained by the uneven pressure distribution between the pallet deck and bottom layer of boxes. Pressure data showed that a higher percentage of total pressure was located under the box sidewalls that were supported on the outside stringers of low stiffness pallets in comparison to high stiffness pallets. This was disproportionately loading one side of the box. Utilizing the effects of pallet top deck stiffness on box compression performance, a unit load cost analysis is presented showing that a stiffer pallet can be used to carry boxes with less board material; hence, it can reduce the total unit load packaging cost. / Master of Science / Packaged products are primarily shipped as unit loads that consist of packaged products restrained to a platform, commonly a pallet. Paying particular attention to the design of the unit loads' components is necessary to safely ship products while still maintaining low packaging costs and sustainability initiatives. Stacking unit loads is a common practice to effectively use warehouse space, but warehouse stacking causes large amounts of weight for packaging to support. Pallets are not completely rigid and will deform because of this weight. The purpose of the study was to investigate the effect of pallet stiffness on the compression strength of corrugated boxes. Compression tests were completed on boxes supported by pallet designs having different deck stiffnesses. The top deck stiffness of a pallet was determined to have up to a 37% effect on the strength of corrugated boxes. Pressure data recorded between the bottom layer of boxes and the top deck of the pallet showed a larger percentage of pressure was located towards the outside edges of the unit load for boxes carried by a flexible pallet. Effectively, one side of the box was stressed more than the other causing package failure. Utilizing the effects of pallet top deck stiffness on box compression performance, a unit load cost analysis is presented showing that a stiffer pallet can be used to carry boxes with less board material; hence, it can reduce the total unit load packaging cost.

Page generated in 0.0458 seconds