Spelling suggestions: "subject:"cosmic ways"" "subject:"cosmic days""
191 |
Multidimensional multiscale dynamics of high-energy astrophysical flowsCouch, Sean Michael 23 November 2010 (has links)
Astrophysical flows have an enormous dynamic range of relevant length scales. The physics occurring on the smallest scales often influences the physics of the largest scales, and vice versa. I present a detailed study of the multiscale and multidimensional behavior of three high-energy astrophysical flows: jet-driven supernovae, massive black hole accretion, and current-driven instabilities in gamma-ray burst external shocks. Both theory and observations of core-collapse supernovae indicate these events are not spherically-symmetric; however, the observations are often modeled assuming a spherically-symmetric explosion. I present an in-depth exploration of the effects of aspherical explosions on the observational characteristics of supernovae. This is accomplished in large part by high-resolution, multidimensional numerical simulations of jet-driven supernovae. The existence of supermassive black holes in the centers of most large galaxies is a well-established fact in observational astronomy. How such black holes came to be so massive, however, is not well established. In this work, I discuss the implications of radiative feedback and multidimensional behavior on black hole accretion. I show that the accretion rate is drastically reduced relative to the Eddington rate, making it unlikely that stellar mass black holes could grow to supermassive black holes in less than a Hubble time. Finally, I discuss a mechanism by which magnetic field strength could be enhanced behind a gamma-ray burst external shock. This mechanism relies on a current-driven instability that would cause reorganization of the pre-shock plasma into clumps. Once shocked, these clumps generate vorticity in the post-shock plasma and ultimately enhance the magnetic energy via a relativistic dynamo process. / text
|
192 |
Study of the inclusive cross sections in P-P collisions and their application to interstellar cosmic-ray calculationTan, Lun-chang, 譚倫昌 January 1983 (has links)
published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
193 |
Ατμοσφαιρικοί καταιονισμοί ενεργών κοσμικών σωματίων : Ανίχνευση και ανακατασκευή τουςΑυγήτας, Θεόδωρος 30 July 2014 (has links)
Το Δεκέμβρη του 2013 στην Κέντρο Παιδείας Επιστημών της Πάτρας εγκαταστάθηκε και έλαβε μετρήσεις ένας σταθμός HELYCON τριών ανιχνευτών σπινθηρισμών και μία κεραία LOFAR. Σκοπός μας ήταν η καταγραφή Εκτεταμένων Ατμοσφαιρικών Καταιονισμών τόσο με το σταθμό HELYCON όσο και με την κεραία η
οποία λειτούργησε με σήμα σκανδαλισμού από το σταθμό. Στην εργασία αυτή περιγράφεται η μέθοδος με την οποία βαθμονομήθηκε ο συγκεκριμένος σταθμός,
η λειτουργία του καθώς και η ανάλυση των μετρήσεων. Αρχικά περιγράφεται η
διαδικασία με την οποία βαθμονομούνται οι φωτοπολλάπλασιαστές στο εργαστήριο φυσικής του Ελληνικού Ανοικτού Πανεπιστημίου. Στην συνέχεια παρουσιάζονται τα στάδια από τα οποία περνάει ένας ανιχνευτής ώστε να εκτιμηθούν τα
λειτουργικά του χαρακτηριστικά. Τέλος πραγματοποιούνται μετρήσεις βαθμονόμησης της ομάδας ανιχνευτών που θα αποτελέσουν ένα σταθμό HELYCON. Η εργασία ολοκληρώνεται με την ανάλυση των δεδομένων και τη σύγκρισή τους με τα
αποτελέσματα που προέκυψαν από την προσομοίωση Monte Carlo. Η συμφωνία
του πειράματος και της προσομοίωσης επιβεβαιώνουν την αξιόπιστη λειτουργία
του σταθμού. Όλες οι παραπάνω διαδικασίες γίνονται σύμφωνα με την μεθοδολογία που παρουσιάζεται στη διδακτορική διατριβή του Δρ. Μπουρλή. / The subject of the current work is the extensive air showers, their Detection and reconstruction.
|
194 |
Modelling of galactic and jovian electrons in the heliosphere / Daniel M. MoeketsiMoeketsi, Daniel Mojalefa January 2004 (has links)
A three-dimensional (3D) steady-state electron modulation model based on Parker (1965) transport
equation is applied to study the modelling of – 7 MeV galactic and Jovian electrons in the inner
heliosphere. The latter is produced within Jupiter's magnetosphere which is situated at - 5 AU in the
ecliptic plane. The heliospheric propagation of these particles is mainly described by the heliospheric
diffusion tensor. Some elements of the tensor, such as the diffusion coefficient in the azimuthal direction,
which were neglected in the previous two-dimensional modulation studies are investigated to account for
the three-dimensional transport of Jovian electrons. Different anisotropic solar wind speed profiles that
could represent solar minimum conditions were modelled and their effects were illustrated by computing
the distribution of 7 MeV Jovian electrons in the equatorial regions. In particular, the electron intensity
time-profile along the Ulysses spacecraft trajectory was calculated for these speed profiles and compared
to the 3-10 MeV electron flux observed by the Kiel Electron Telescope (KET) on board the Ulysses
spacecraft from launch (1990) up to end of its first out-of-ecliptic orbit (2000). It was found that the
model solution computed with the solar wind profile previously assumed for typical solar minimum
conditions produced good compatibility with observations up to 1998. After 1998 all model solutions
deviated completely from the observations. In this study, as a further attempt to model KET observations
more realistically, a new relation is established between the latitudinal dependence of the solar wind
speed and the perpendicular polar diffusion. Based on this relation, a transition of an average solar wind
speed from solar minimum conditions to intermediate solar activity and to solar maximum conditions
was modelled based on the assumption of the time-evolution of large polar coronal holes and were
correlated to different scenarios of the enhancement of perpendicular polar diffusion. Effects of these
scenarios were illustrated, as a series of steady-state solutions, on the computed 7 MeV Jovian and
galactic electrons in comparison with the 3-10 MeV electron observed by the KET instrument from the
period 1998 up to the end of 2003. Subsequent effects of these scenarios were also shown on electron
modulation in general. It was found that this approach improved modelling of the post-1998 discrepancy
between the model and KET observations but it also suggested the need for a time-dependent 3D
electron modulation model to describe modulation during moderate to extreme solar maximum
conditions. / Thesis (M.Sc.)--North-West University, Potchefstroom Campus, 2004.
|
195 |
Effects of termination shock acceleration on cosmic rays in the heliosphere / U.W. LangnerLangner, Ulrich Wilhelm January 2004 (has links)
The interest in the role of the solar wind termination shock (TS) and heliosheath in cosmic ray (CR) modulation
studies has increased sigm6cantly as the Voyager 1 and 2 spacecraft approach the estimated position of the TS. For
this work the modulation of galactic CR protons, anti-protons, electrons with a Jovian source, positrons, Helium,
and anomalous protons and Helium, and the consequent charge-sign dependence, are studied with an improved
and extended two-dimensional numerical CR modulation model including a TS with diffusive shock acceleration, a
heliosheath and drifts. The modulation is computed using improved local interstellar spectra (LIS) for almost all
the species of interest to this study and new fundamentally derived diffusion coefficients, applicable to a number of
CR species during both magnetic polarity cycles of the Sun. The model also allows comparisons of modulation with
and without a TS and between solar minimum and moderate maximum conditions. The modulation of protons
and Helium with their respective anomalous components are also studied to establish the consequent charge-sign
dependence at low energies and the influence on the computed p/p, e-/p, and e-/He. The level of modulation in
the simulated heliosheath, and the importance of this modulation 'barrier' and the TS for the different species are
illustrated. From the computations it is possible to estimate the ratio of modulation occurring in the heliosheath
to the total modulation between the heliopause and Earth for the mentioned species. It has been found that the
modulation in the heliosheath depends on the particle species, is strongly dependent on the energy of the CRs, on
the polarity cycle and is enhanced by the inclusion of the TS. The computed modulation for the considered species
is surprisingly different and the heliosheath is important for CR modulation, although 'barrier' modulation is more
prominent for protons, anti-protons and Helium, while the heliosheath cannot really be considered a modulation
'barrier' for electrons and positrons above energies of ~150 MeV. The effects of the TS on modulation are more
pronounced for polarity cycles when particles are drifting primarily in the equatorial regions of the heliosphere
along the heliospheric current sheet to the Sun, e.g. the A < 0 polarity cycle for protons, positrons, and Helium,
and the A > 0 polarity cycle for electrons and anti-protons. This study also shows that the proton and Helium
LIS may not be known at energies <~ 200 MeV until a spacecraft actually approaches the heliopause because of the
strong modulation that occurs in the heliosheath, the effect of the TS, and the presence of anomalous protons and
Helium. For anti-protons, in contrast, these effects are less pronounced. For positrons, with a completely different
shape LIS, the modulated spectra have very mild energy dependencies <~ 300 MeV, even at Earth, in contrast to the
other species. These characteristic spectral features may be helpful to distinguish between electron and positron
spectra when they are measured near and at Earth. These simulations can be of use for future missions to the
outer heliosphere and beyond. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2004.
|
196 |
Time-dependent modulation of cosmic rays in the outer heliosphere / Rex ManuelManuel, Rex January 2013 (has links)
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing
intensities using a two-dimensional, time-dependent modulation model. The compound
approach of Ferreira and Potgieter (2004), which describes changes in the cosmic ray
transport coefficients over a solar cycle, is improved by introducing recent theoretical advances
in the model. Computed intensities are compared with Voyager 1 and 2, IMP 8 and Ulysses
proton observations in search of compatibility. It is shown that this approach gives realistic
cosmic ray proton intensities on a global scale at Earth and along both Voyager spacecraft
trajectories. The results show that cosmic ray modulation, in particular during the present
polarity cycle, is not just determined by changes in the drift coefficient but is also dependent
on changes in the diffusion coefficients. Furthermore, a comparison of computations to observations
along the Voyager 1 and Voyager 2 trajectories illustrates that the heliosphere is
asymmetrical. Assuming the latter, E > 70 MeV and 133-242 MeV cosmic ray proton intensities
along Voyager 1 and 2 trajectories are predicted from 2012 onwards. It is shown that
the computed intensities along Voyager 1 can increase with an almost constant rate since the
spacecraft is close to the heliopause. However, the model shows that Voyager 2 is still under
the influence of temporal solar activity changes because of the relatively large distance to
the heliopause when compared to Voyager 1. Along the Voyager 2 trajectory the intensities
should remain generally constant for the next few years and then should start to steadily increase.
It is also found that without knowing the exact location of heliopause and transport
parameters one cannot conclude anything about local interstellar spectra. The effect of a dynamic
inner heliosheath width on cosmic ray modulation is also studied by implementing a
time-dependent termination shock position in the model. This does not lead to improved compatibility
with spacecraft observations so that a time-dependent termination shock along with
a time-dependent heliopause position is required. The variation of the heliopause position
over a solar cycle is found to be smaller compared to that of the termination shock. The model
predicts the heliopause and termination shock positions along Voyager 1 in 2012 at 119 AU
and 88 AU respectively and along Voyager 2 at 100 AU and 84 AU respectively. / Thesis (PhD (Space Physics))--North-West University, Potchefstroom Campus, 2013
|
197 |
Time-dependent modulation of cosmic rays in the outer heliosphere / Rex ManuelManuel, Rex January 2013 (has links)
The time-dependent modulation of galactic cosmic rays in the heliosphere is studied by computing
intensities using a two-dimensional, time-dependent modulation model. The compound
approach of Ferreira and Potgieter (2004), which describes changes in the cosmic ray
transport coefficients over a solar cycle, is improved by introducing recent theoretical advances
in the model. Computed intensities are compared with Voyager 1 and 2, IMP 8 and Ulysses
proton observations in search of compatibility. It is shown that this approach gives realistic
cosmic ray proton intensities on a global scale at Earth and along both Voyager spacecraft
trajectories. The results show that cosmic ray modulation, in particular during the present
polarity cycle, is not just determined by changes in the drift coefficient but is also dependent
on changes in the diffusion coefficients. Furthermore, a comparison of computations to observations
along the Voyager 1 and Voyager 2 trajectories illustrates that the heliosphere is
asymmetrical. Assuming the latter, E > 70 MeV and 133-242 MeV cosmic ray proton intensities
along Voyager 1 and 2 trajectories are predicted from 2012 onwards. It is shown that
the computed intensities along Voyager 1 can increase with an almost constant rate since the
spacecraft is close to the heliopause. However, the model shows that Voyager 2 is still under
the influence of temporal solar activity changes because of the relatively large distance to
the heliopause when compared to Voyager 1. Along the Voyager 2 trajectory the intensities
should remain generally constant for the next few years and then should start to steadily increase.
It is also found that without knowing the exact location of heliopause and transport
parameters one cannot conclude anything about local interstellar spectra. The effect of a dynamic
inner heliosheath width on cosmic ray modulation is also studied by implementing a
time-dependent termination shock position in the model. This does not lead to improved compatibility
with spacecraft observations so that a time-dependent termination shock along with
a time-dependent heliopause position is required. The variation of the heliopause position
over a solar cycle is found to be smaller compared to that of the termination shock. The model
predicts the heliopause and termination shock positions along Voyager 1 in 2012 at 119 AU
and 88 AU respectively and along Voyager 2 at 100 AU and 84 AU respectively. / Thesis (PhD (Space Physics))--North-West University, Potchefstroom Campus, 2013
|
198 |
炭素14と宇宙線変動 : 奈良時代の異変Nakamura, Toshio, Nagaya, Kentarou, Miyake, Fusa, Masuda, Kimiaki, 中村, 俊夫, 永冶, 健太朗, 三宅, 芙沙, 増田, 公明 03 1900 (has links)
名古屋大学年代測定総合研究センターシンポジウム報告
|
199 |
Modelling of galactic and jovian electrons in the heliosphere / Daniel M. MoeketsiMoeketsi, Daniel Mojalefa January 2004 (has links)
A three-dimensional (3D) steady-state electron modulation model based on Parker (1965) transport
equation is applied to study the modelling of – 7 MeV galactic and Jovian electrons in the inner
heliosphere. The latter is produced within Jupiter's magnetosphere which is situated at - 5 AU in the
ecliptic plane. The heliospheric propagation of these particles is mainly described by the heliospheric
diffusion tensor. Some elements of the tensor, such as the diffusion coefficient in the azimuthal direction,
which were neglected in the previous two-dimensional modulation studies are investigated to account for
the three-dimensional transport of Jovian electrons. Different anisotropic solar wind speed profiles that
could represent solar minimum conditions were modelled and their effects were illustrated by computing
the distribution of 7 MeV Jovian electrons in the equatorial regions. In particular, the electron intensity
time-profile along the Ulysses spacecraft trajectory was calculated for these speed profiles and compared
to the 3-10 MeV electron flux observed by the Kiel Electron Telescope (KET) on board the Ulysses
spacecraft from launch (1990) up to end of its first out-of-ecliptic orbit (2000). It was found that the
model solution computed with the solar wind profile previously assumed for typical solar minimum
conditions produced good compatibility with observations up to 1998. After 1998 all model solutions
deviated completely from the observations. In this study, as a further attempt to model KET observations
more realistically, a new relation is established between the latitudinal dependence of the solar wind
speed and the perpendicular polar diffusion. Based on this relation, a transition of an average solar wind
speed from solar minimum conditions to intermediate solar activity and to solar maximum conditions
was modelled based on the assumption of the time-evolution of large polar coronal holes and were
correlated to different scenarios of the enhancement of perpendicular polar diffusion. Effects of these
scenarios were illustrated, as a series of steady-state solutions, on the computed 7 MeV Jovian and
galactic electrons in comparison with the 3-10 MeV electron observed by the KET instrument from the
period 1998 up to the end of 2003. Subsequent effects of these scenarios were also shown on electron
modulation in general. It was found that this approach improved modelling of the post-1998 discrepancy
between the model and KET observations but it also suggested the need for a time-dependent 3D
electron modulation model to describe modulation during moderate to extreme solar maximum
conditions. / Thesis (M.Sc.)--North-West University, Potchefstroom Campus, 2004.
|
200 |
Effects of termination shock acceleration on cosmic rays in the heliosphere / U.W. LangnerLangner, Ulrich Wilhelm January 2004 (has links)
The interest in the role of the solar wind termination shock (TS) and heliosheath in cosmic ray (CR) modulation
studies has increased sigm6cantly as the Voyager 1 and 2 spacecraft approach the estimated position of the TS. For
this work the modulation of galactic CR protons, anti-protons, electrons with a Jovian source, positrons, Helium,
and anomalous protons and Helium, and the consequent charge-sign dependence, are studied with an improved
and extended two-dimensional numerical CR modulation model including a TS with diffusive shock acceleration, a
heliosheath and drifts. The modulation is computed using improved local interstellar spectra (LIS) for almost all
the species of interest to this study and new fundamentally derived diffusion coefficients, applicable to a number of
CR species during both magnetic polarity cycles of the Sun. The model also allows comparisons of modulation with
and without a TS and between solar minimum and moderate maximum conditions. The modulation of protons
and Helium with their respective anomalous components are also studied to establish the consequent charge-sign
dependence at low energies and the influence on the computed p/p, e-/p, and e-/He. The level of modulation in
the simulated heliosheath, and the importance of this modulation 'barrier' and the TS for the different species are
illustrated. From the computations it is possible to estimate the ratio of modulation occurring in the heliosheath
to the total modulation between the heliopause and Earth for the mentioned species. It has been found that the
modulation in the heliosheath depends on the particle species, is strongly dependent on the energy of the CRs, on
the polarity cycle and is enhanced by the inclusion of the TS. The computed modulation for the considered species
is surprisingly different and the heliosheath is important for CR modulation, although 'barrier' modulation is more
prominent for protons, anti-protons and Helium, while the heliosheath cannot really be considered a modulation
'barrier' for electrons and positrons above energies of ~150 MeV. The effects of the TS on modulation are more
pronounced for polarity cycles when particles are drifting primarily in the equatorial regions of the heliosphere
along the heliospheric current sheet to the Sun, e.g. the A < 0 polarity cycle for protons, positrons, and Helium,
and the A > 0 polarity cycle for electrons and anti-protons. This study also shows that the proton and Helium
LIS may not be known at energies <~ 200 MeV until a spacecraft actually approaches the heliopause because of the
strong modulation that occurs in the heliosheath, the effect of the TS, and the presence of anomalous protons and
Helium. For anti-protons, in contrast, these effects are less pronounced. For positrons, with a completely different
shape LIS, the modulated spectra have very mild energy dependencies <~ 300 MeV, even at Earth, in contrast to the
other species. These characteristic spectral features may be helpful to distinguish between electron and positron
spectra when they are measured near and at Earth. These simulations can be of use for future missions to the
outer heliosphere and beyond. / Thesis (Ph.D. (Physics))--North-West University, Potchefstroom Campus, 2004.
|
Page generated in 0.2898 seconds