• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 493
  • 91
  • 61
  • 47
  • 21
  • 14
  • 13
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 2
  • Tagged with
  • 943
  • 387
  • 183
  • 155
  • 152
  • 134
  • 114
  • 99
  • 88
  • 85
  • 84
  • 69
  • 69
  • 66
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Atmospheric and Interstellar Cosmic Rays Measured With the CAPRICE98 Experiment

Mocchiutti, Emiliano January 2003 (has links)
No description available.
492

An Error Prevention Model For Cosmic Functional Size Measurement Method

Salmanoglu, Murat 01 September 2012 (has links) (PDF)
Estimation and measurement of the size of software is crucial for project management activities. Functional size measurement is one of the most frequently used methods to measure size of software and COSMIC is one of the popular methods for functional size measurement. Although precise size measurement is critical, the results may differ because of the errors made in the measurement process. The erroneous measurement results cause lack of confidence for the methods as well as reliability problems for effort and cost estimations. This research proposes an error prevention model for COSMIC Functional Size Measurement method to increase the reliability of the measurements. The prevention model defines data movement patterns for different types of the functional processes and a cardinality table to prevent errors. We validated the prevention model with two different case studies and observed that it can decrease errors up to 90% in our case studies.
493

Studies of cosmic rays with the anticoincidence system of the PAMELA satellite experiment

Orsi, Silvio January 2007 (has links)
PAMELA is a satellite-borne experiment designed to study the charged component of the cosmic radiation of galactic, solar and trapped nature. The main scientific objective is the study of the antimatter component of cosmic rays over a wide range of energies (antiprotons: 80 MeV–190 GeV, positrons: 50 MeV–270 GeV). PAMELA is also searching for antinuclei with a precision ~10^−7 in anti-He/He measurements. PAMELA is mounted on the Resurs DK1 satellite that was launched on June 15th 2006 from the Baikonur cosmodrome and is now on a semipolar (69.9°) elliptical (350 × 600 km) orbit. The experiment has been acquiring data since July 11th 2006 and has a foreseen lifetime of at least 3 years. The PAMELA apparatus consists of a permanent magnet silicon spectrometer, an electromagnetic imaging calorimeter, a time of flight system, a scintillator-based anticoincidence (AC) system, a tail catcher scintillator and a neutron detector. The AC system can be used to reject particles not cleanly entering the PAMELA acceptance. Tests of the PAMELA instrument in its final flight configuration involved long duration acquisition runs with cosmic particles (mainly muons) on ground. A study of the functionality of the AC system during these runs is presented here with a set of selected muons. Studies of activity in the AC detectors as function of the rigidity of the muons and in correlation with the activity in the spectrometer and in the calorimeter are presented. A study of the AC system functionality during in-flight operations provides a map of the particle flux in orbit, and shows the anisotropy in the arrival direction of trapped particles in the Van Allen radiation belts. The singles rates indicate that the AC system saturates in the South Atlantic anomaly (SAA). Information from the AC system in the SAA is therefore not reliable for physics analysis. The timing and multiplicity of AC activity correlated to particle triggers has been studied. A dependence on orbital position was observed. An LED (Light Emitting Diode) based monitoring system was designed to determine the in-orbit behaviour of the AC system independently of the radiation environment and to compare it to the pre-launch behaviour. The LED system shows that the properties of the AC system are stable during flight and that no significant changes in performance occurred as a result of the launch. / QC 20100811
494

Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

Pinzke, Anders January 2010 (has links)
The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Accepted.
495

Signatures of New Physics from the Primordial Universe

Ashoorioon, Amjad 15 August 2007 (has links)
During inflation quantum fluctuations of the field driving inflation, known as inflaton, were stretched by inflationary expansion to galactic size scales or even larger. A possible implication of inflation -- if it is correct -- is that our observable universe was once of sub-Planckian size. Thus inflation could act as a magnifier to probe the short distance structure of space-time. General arguments about the quantum theory of gravity suggest that the short distance structure of space-time can be modeled as arising from some corrections to the well-known uncertainty relation between the position and momentum operators. Such modifications have been predicted by more fundamental theories such as string theory. This modified commutation relation has been implemented at the first quantized level to the theory of cosmological perturbations. In this thesis, we will show that the aforementioned scenario of implementing the minimal length to the action has an ambiguity: total time derivatives that in continuous space-time could be neglected and do not contribute to the equations of motion, cease to remain total time derivatives as we implement minimal length. Such an ambiguity opens up the possibility for trans-Planckian physics to leave an imprint on the ratio of tensor to scalar fluctuations. In near de-Sitter space, we obtain the explicit dependence of the tensor/scalar on the minimal length. Also the first consistency relation is examined in a power-law background, where it is found that despite the ambiguity that exists in choosing the action, Planck scale physics modifies the consistency relation considerably as it leads to large oscillations in the scalar spectral index in the observable range of scales. In the second part of the thesis, I demonstrate how the assumption of existence of invariant minimal length can assist us to explain the origin of cosmic magnetic fields. The third part of the thesis is dedicated to the study of signatures of M-theory Cascade inflation.
496

Development of Cosmic Ray Simulation Program -- Earth Cosmic Ray Shower (ECRS)

Hakmana Witharana, Sampath S 04 May 2007 (has links)
ECRS is a program for the detailed simulation of extensive air shower initiated by high energy cosmic ray particles. In this dissertation work, a Geant4 based ECRS simulation was designed and developed to study secondary cosmic ray particle showers in the full range of Earth's atmosphere. A proper atmospheric air density and geomagnetic field are implemented in order to correctly simulate the charged particles interactions in the Earth's atmosphere. The initial simulation was done for the Atlanta (33.460 N , 84.250 W) region. Four different types of primary proton energies (109, 1010, 1011 and 1012 eV) were considered to determine the secondary particle distribution at the Earth's surface. The geomagnetic field and atmospheric air density have considerable effects on the muon particle distribution at the Earth's surface. The muon charge ratio at the Earth's surface was studied with ECRS simulation for two different geomagnetic locations: Atlanta, Georgia, USA and Lynn Lake, Manitoba, Canada. The simulation results are shown in excellent agreement with the data from NMSU-WIZARD/CAPRICE and BESS experiments at Lynn Lake. At low momentum, ground level muon charge ratios show latitude dependent geomagnetic effects for both Atlanta and Lynn Lake from the simulation. The simulated charge ratio is 1.20 ± 0.05 (without geomagnetic field), 1.12 ± 0.05 (with geomagnetic field) for Atlanta and 1.22 ± 0.04 (with geomagnetic field) for Lynn Lake. These types of studies are very important for analyzing secondary cosmic ray muon flux distribution at the Earth's surface and can be used to study the atmospheric neutrino oscillations.
497

A study of unlearning IT Instruments in health organization

Hussain, Syed Tajammul January 2009 (has links)
Nothing has been that consistent as the change is for the knowledge revolution to nourish and cultivate. Different forms of changes are occurring in organizations with the aim to improve the output performances. Health organizations have been more attached to the changes and the consequences that are brought with such changes. Such consequences are primarily connected with concepts of unlearning and learning. Any form of the change if initiated in organization asks for new routines learning, tasks conductions and the organizational cultural revolution. These new routines have been occurring at individual and organizational levels. The unlearning at any level in the organizational culture can be performed through investigating a primary connection between the organizational and individual routines. At the individual level unlearning brings a number of psychological, cognitive, social and moral hurdles. These hurdles at individual level basically help the organizational unlearning to occur. All of the routines occurring at individual level encompass the necessary information that goes from lower levels to upward, strengthening and holding the organizational memory firm. This research was about to find how the health organizations unlearn the older practices and learn the new practices in IT change. This research had two streams i) finding whether there had been any connection between the organizational and individual unlearning in the cases of IT change, ii) For unlearning what kind of hurdles had been there at the individual level. Kalmar hospital pediatric department had been chosen for the empirical investigations. The research streams were about how and what parts which helped the researcher to go for the qualitative data gathering techniques. The Results showed there had been a very thin connectivity between the organizational and individual unlearning. The results revealed and unfolded that many of the new learning are occurring simultaneously with discarding the older ways of practices. The impression of absorbing the change with respect to the unlearning had been varied from person to person. There had been a numbers of individual hurdles observed at individual level of unlearning. Apart from them, many individual routines (performative tasks) had the primary connectivity with the organizational routines (Ostensive routines) and shaping and reshaping of the organizational memory. It is important to understand the unlearning notions with the type of change. In this research each of the interviewee had shared his thoughts of how the things could have been done differently by revealing the consequences with new learning. Literature suggests that for a profound and successful implementation of change more formal and informal trainings, clear strategy for shuffling the older individuals in the camp, more social and cognitive meetings and fast and quick actions in the cases of technical difficulties are to be taken. / Thesis
498

A study of unlearning IT Instruments in health organization

Hussain, Syed Tajammul January 2009 (has links)
Nothing has been that consistent as the change is for the knowledge revolution to nourish and cultivate. Different forms of changes are occurring in organizations with the aim to improve the output performances. Health organizations have been more attached to the changes and the consequences that are brought with such changes. Such consequences are primarily connected with concepts of unlearning and learning. Any form of the change if initiated in organization asks for new routines learning, tasks conductions and the organizational cultural revolution. These new routines have been occurring at individual and organizational levels. The unlearning at any level in the organizational culture can be performed through investigating a primary connection between the organizational and individual routines. At the individual level unlearning brings a number of psychological, cognitive, social and moral hurdles. These hurdles at individual level basically help the organizational unlearning to occur. All of the routines occurring at individual level encompass the necessary information that goes from lower levels to upward, strengthening and holding the organizational memory firm. This research was about to find how the health organizations unlearn the older practices and learn the new practices in IT change. This research had two streams i) finding whether there had been any connection between the organizational and individual unlearning in the cases of IT change, ii) For unlearning what kind of hurdles had been there at the individual level. Kalmar hospital pediatric department had been chosen for the empirical investigations. The research streams were about how and what parts which helped the researcher to go for the qualitative data gathering techniques. The Results showed there had been a very thin connectivity between the organizational and individual unlearning. The results revealed and unfolded that many of the new learning are occurring simultaneously with discarding the older ways of practices. The impression of absorbing the change with respect to the unlearning had been varied from person to person. There had been a numbers of individual hurdles observed at individual level of unlearning. Apart from them, many individual routines (performative tasks) had the primary connectivity with the organizational routines (Ostensive routines) and shaping and reshaping of the organizational memory. It is important to understand the unlearning notions with the type of change. In this research each of the interviewee had shared his thoughts of how the things could have been done differently by revealing the consequences with new learning. Literature suggests that for a profound and successful implementation of change more formal and informal trainings, clear strategy for shuffling the older individuals in the camp, more social and cognitive meetings and fast and quick actions in the cases of technical difficulties are to be taken. / Thesis
499

Signatures of New Physics from the Primordial Universe

Ashoorioon, Amjad 15 August 2007 (has links)
During inflation quantum fluctuations of the field driving inflation, known as inflaton, were stretched by inflationary expansion to galactic size scales or even larger. A possible implication of inflation -- if it is correct -- is that our observable universe was once of sub-Planckian size. Thus inflation could act as a magnifier to probe the short distance structure of space-time. General arguments about the quantum theory of gravity suggest that the short distance structure of space-time can be modeled as arising from some corrections to the well-known uncertainty relation between the position and momentum operators. Such modifications have been predicted by more fundamental theories such as string theory. This modified commutation relation has been implemented at the first quantized level to the theory of cosmological perturbations. In this thesis, we will show that the aforementioned scenario of implementing the minimal length to the action has an ambiguity: total time derivatives that in continuous space-time could be neglected and do not contribute to the equations of motion, cease to remain total time derivatives as we implement minimal length. Such an ambiguity opens up the possibility for trans-Planckian physics to leave an imprint on the ratio of tensor to scalar fluctuations. In near de-Sitter space, we obtain the explicit dependence of the tensor/scalar on the minimal length. Also the first consistency relation is examined in a power-law background, where it is found that despite the ambiguity that exists in choosing the action, Planck scale physics modifies the consistency relation considerably as it leads to large oscillations in the scalar spectral index in the observable range of scales. In the second part of the thesis, I demonstrate how the assumption of existence of invariant minimal length can assist us to explain the origin of cosmic magnetic fields. The third part of the thesis is dedicated to the study of signatures of M-theory Cascade inflation.
500

Monte Carlo simulations of solid walled proportional counters with different site size for HZE radiation

Wang, Xudong 15 May 2009 (has links)
Characterizing high z high energy (HZE) particles in cosmic radiation is of importance for the study of the equivalent dose to astronauts. Low pressure, tissue equivalent proportional counters (TEPC) are routinely used to evaluate radiation exposures in space. A multiple detector system composed of three TEPC of different sizes was simulated using the Monte-Carlo software toolkit GEANT4. The ability of the set of detectors to characterize HZE particles, as well as measure dose, was studied. HZE particles produce energetic secondary electrons (-rays) which carry a significant fraction of energy lost by the primary ion away from its track. The range and frequency of these delta rays depends on the velocity and charge of the primary ion. Measurements of lineal energy spectra in different size sites will differ because of these delta ray events and may provide information to characterize the incident primary particle. Monte Carlo calculations were accomplished, using GEANT4, simulating solid walled proportional detectors with unit density site diameter of 0.1, 0.5 and 2.5 µm in a uniform HZE particle field. The simulated spherical detectors have 2 mm thick tissue equivalent walls. The uniform beams of 1 GeV/n, 500 MeV/n and 100 MeV/n 56Fe, 28Si, 16O, 4He and proton particles were used to bombard the detector. The size effect of such a detector system was analyzed with the calculation results. The results show that the y vs. yf(y) spectrum differs significantly as a function of site size. From the spectra, as well as the calculated mean lineal energy, the simulated particles can be characterized. We predict that the detector system is capable of characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction. characterizing HZE particles in a complex field. This suggests that it may be practical to use such a system to measure the average particle velocity as well as the absorbed dose delivered by HZE particles in space. The parameters used in the simulation are also good references for detector construction.

Page generated in 0.0235 seconds