Spelling suggestions: "subject:"cotangent bundle"" "subject:"cotangente bundle""
1 |
Equivariant Symplectic Geometry of Cotangent BundlesAndreas.Cap@esi.ac.at 20 February 2001 (has links)
No description available.
|
2 |
Tangent and Cotangent Bundles, Automorphism Groups and Representations of Lie GroupsHindeleh, Firas Y. 06 September 2006 (has links)
No description available.
|
3 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
4 |
Koliestinių sluoksniuočių homogeninės beveik kompleksinės struktūros / Homogeneous almost complex structure of contangent bundleŽilėnaitė, Judita 13 August 2012 (has links)
Darbe nagrinėjamos koliestinės sluoksniuotės su apibrėžta metrika. Parodyta kaip šių erdvių metrinis tenzorius indukuoja tiesinę ir afiniąją sietį, surasti šių siečių kreivumo objektai. Įrodyta, kad šiose sluoksniuotėse egzistuoja vidinės homogeninės beveik kompleksinės struktūros. Nustatytos šių struktūrų integruojamumo sąlygos, surastos sąlygos, kad šį struktūra būtų Kelerio tipo. / In this paper cotangent bundle with determinate metrics are analysed. It is shown how metrical tensor of those spaces induces linear and affine connections, also objects of those connections‘ curvature are found. It is proved that intrinsic homogeneous almost complex structure exists in that bundle. Conditions of those structure integration are identified as well as conditions for this structure to be Kahler‘s type are found.
|
5 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
6 |
Modules réflexifs de rang 1 sur les variétés nilpotentesJauffret, Colin 09 1900 (has links)
Soit G un groupe algébrique linéaire complexe, simple, connexe et simplement connexe.
Étant donné un sous-groupe parabolique P G et un idéal nilpotent n p, il existe un
morphisme propre d’effondrement G x P n = Gn. Il se factorise en une variété affine et
normale N := SpecC [G P n] que nous appelons variété nilpotente.
Sous l’hypothèse que l’effondrement soit génériquement fini, nous décrivons le groupe
des classes de diviseurs équivariants de N à l’aide de C[N]-modules réflexifs équivariants
de rang 1. Un représentant de chaque classe peut être choisi comme les sections globales
d’un fibré en droite sur G x P' n' où G x P' n' = Gn' est un effondrement possiblement
distinct qui se factorise à travers la même variété nilpotente.
Dans le cas où le groupe G est de type A ou dans le cas d’un effondrement provenant de
certains diagrammes de Dynkin pondérés spécifiques, nous démontrons que les représentants
proviennent de poids qui peuvent être choisis comme dominants. Dans ce cas, nous
démontrons que si le module représente un élément torsion du groupe des classes, alors il
est Cohen–Macaulay. Nous en déduisons un théorème d’annulation en cohomologie. / Let G be a simple, connected, simply connected complex linear algebraic group with
parabolic subgroup P G and nilpotent ideal n p. The proper collapsing map G x P n =
Gn factors through the normal affine variety N := SpecC [G x P n] which is called a
nilpotent variety.
Assuming the collapsing is generically finite, we describe the equivariant divisor class
group of N using rank 1 reflexive equivariant C[N]-modules. A representative of each class
may be chosen as global sections of a line bundle over G x P' n' where G x P' n' = Gn' is
a possibly distinct collapsing that factors through the same nilpotent variety.
Assuming either G is of type A or the collapsing comes from specific weighted Dynkin
diagrams,we showthat each representative arise from a weight that may be chosen dominant.
Moreover, if the module represents a torsion element within the class group, then it is Cohen–
Macaulay and we deduce a cohomological vanishing theorem.
|
Page generated in 0.0592 seconds