Spelling suggestions: "subject:"variété dde drapeau"" "subject:"variété dde draper""
1 |
Localisation de représentations localement analytiques admissibles / Localization of admissible locally analytic representationsSarrazola Alzate, Andrés 26 July 2019 (has links)
Soit G un schéma en groupes réductif, connexe et déployé sur l’anneau d’entiers d’une extension finie du corps de nombres p-adiques. Un théorème important dans la théorie des groupes c’est le théorème de localisation, ce qui a été démontré par A. Beilinson et J. Bernstein, et par J.L. Brylinsky et M. Kashiwara. Il s’agit d’un résultat de D-affinité pour la variété de drapeaux de la fibre générique de G. En caractéristique mixte un progrès important se trouve dans les travaux de C. Huyghe et T. Schmidt. Ils donnent une réponse partielle en considérant des caractères algébriques. Les premières quatre chapitres de cette thèse sont consacrés à étendre cette correspondance (le théorème de localisation arithmétique) pour des caractères arbitraires. Dans les chapitres cinq et six, nous traiterons l’objectif principal de cette thèse qui concerne les représentations localement analytiques. Nous montrerons que pour un caractère algébrique, qui est de plus dominant et régulier, la catégorie des représentations admissibles localement analytiques, à caractère central, c’est équivalente à une catégorie de modules arithmétiques coadmissibles et équivariants sur la famille des modèles formels de la variété de drapeaux rigide. / Let G be a split connected, reductive group scheme over the ring of integers of a finite extension of the field of p-adic numbers.. An important theorem in group theory is the localization theorem, demonstrated by A. Beilinson and J. Bernstein, and by J.L. Brylinsky and M. Kashiwara. This is a result about the D-affinity of the flag variety of the generic fiber of G). In mixed characteristic an important progress is found in the work of C. Huyghe and T. Schmidt. They give a partial answer by considering algebraic characters. The first four chapters of this thesis are dedicated to extending this correspondence (the arithmetic localization theorem) for arbitrary characters. In chapters five and six, we will treat the principal objective of this thesis, which concerns admissible locally analytic representations. We will show that for an algebraic character, which is dominant and regular, the category of admissible locally analytic representations, with central character, it is equivalent to the category of coadmissible equivariant arithmetic modules over the family of formal models of the rigid flag variety.
|
2 |
La correspondance de Howe géométrique modérément ramifiée pour les paires duales de type II dans le cadre du programme de Langlands géométriqueBanafsheh, Farang-Hariri 13 June 2012 (has links) (PDF)
Dans cette thèse on s'intéresse à la correspondance de Howe géométrique pour les paires duales réductives de type II (G = GL_n, H = GL_m) sur un corps local non-Archimédien F de caractéristique différente de 2, ainsi qu'à la fonctorialité de Langlands géométrique au niveau Iwahori. Notons S la représentation de Weil de G(F) × H(F) et I_H, I_G des sous groupes d'Iwahori de H(F) et G(F). On considère la version géométrique de la représentation S^(I_G×I_H) des algèbres de Hecke-Iwahori H_H et H_G sur laquelle agissent les foncteurs de Hecke. On obtient des résultats partiels sur la description géométrique de la catégorie correspondante. Nous proposons une conjecture décrivant le groupe de Grothendieck de cette catégorie comme module sur les algèbres de Hecke affines étendues de G et de H. Notre description est en termes d'un champ attaché aux groupes de Langlands duaux dans le style de l'isomorphisme de Kazhdan-Lusztig. On démontre cette conjecture pour toutes les paires (GL_1, GL_m). Plus généralement, étant donné deux groupes réductifs connexes G et H et un morphisme \check{G}× SL_2 \to \check{H} de groupes de Langlands duaux, on suggère un bimodule sur les algèbres de Hecke affines étendues de G et de H qui pourrait conjecturalement réaliser la fonctorialité de Langlands géométrique locale au niveau Iwahori.
|
3 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
4 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
5 |
Modules réflexifs de rang 1 sur les variétés nilpotentesJauffret, Colin 09 1900 (has links)
Soit G un groupe algébrique linéaire complexe, simple, connexe et simplement connexe.
Étant donné un sous-groupe parabolique P G et un idéal nilpotent n p, il existe un
morphisme propre d’effondrement G x P n = Gn. Il se factorise en une variété affine et
normale N := SpecC [G P n] que nous appelons variété nilpotente.
Sous l’hypothèse que l’effondrement soit génériquement fini, nous décrivons le groupe
des classes de diviseurs équivariants de N à l’aide de C[N]-modules réflexifs équivariants
de rang 1. Un représentant de chaque classe peut être choisi comme les sections globales
d’un fibré en droite sur G x P' n' où G x P' n' = Gn' est un effondrement possiblement
distinct qui se factorise à travers la même variété nilpotente.
Dans le cas où le groupe G est de type A ou dans le cas d’un effondrement provenant de
certains diagrammes de Dynkin pondérés spécifiques, nous démontrons que les représentants
proviennent de poids qui peuvent être choisis comme dominants. Dans ce cas, nous
démontrons que si le module représente un élément torsion du groupe des classes, alors il
est Cohen–Macaulay. Nous en déduisons un théorème d’annulation en cohomologie. / Let G be a simple, connected, simply connected complex linear algebraic group with
parabolic subgroup P G and nilpotent ideal n p. The proper collapsing map G x P n =
Gn factors through the normal affine variety N := SpecC [G x P n] which is called a
nilpotent variety.
Assuming the collapsing is generically finite, we describe the equivariant divisor class
group of N using rank 1 reflexive equivariant C[N]-modules. A representative of each class
may be chosen as global sections of a line bundle over G x P' n' where G x P' n' = Gn' is
a possibly distinct collapsing that factors through the same nilpotent variety.
Assuming either G is of type A or the collapsing comes from specific weighted Dynkin
diagrams,we showthat each representative arise from a weight that may be chosen dominant.
Moreover, if the module represents a torsion element within the class group, then it is Cohen–
Macaulay and we deduce a cohomological vanishing theorem.
|
Page generated in 0.0712 seconds