Spelling suggestions: "subject:"locally analytical representations"" "subject:"focally analytical representations""
1 |
Localisation de représentations localement analytiques admissibles / Localization of admissible locally analytic representationsSarrazola Alzate, Andrés 26 July 2019 (has links)
Soit G un schéma en groupes réductif, connexe et déployé sur l’anneau d’entiers d’une extension finie du corps de nombres p-adiques. Un théorème important dans la théorie des groupes c’est le théorème de localisation, ce qui a été démontré par A. Beilinson et J. Bernstein, et par J.L. Brylinsky et M. Kashiwara. Il s’agit d’un résultat de D-affinité pour la variété de drapeaux de la fibre générique de G. En caractéristique mixte un progrès important se trouve dans les travaux de C. Huyghe et T. Schmidt. Ils donnent une réponse partielle en considérant des caractères algébriques. Les premières quatre chapitres de cette thèse sont consacrés à étendre cette correspondance (le théorème de localisation arithmétique) pour des caractères arbitraires. Dans les chapitres cinq et six, nous traiterons l’objectif principal de cette thèse qui concerne les représentations localement analytiques. Nous montrerons que pour un caractère algébrique, qui est de plus dominant et régulier, la catégorie des représentations admissibles localement analytiques, à caractère central, c’est équivalente à une catégorie de modules arithmétiques coadmissibles et équivariants sur la famille des modèles formels de la variété de drapeaux rigide. / Let G be a split connected, reductive group scheme over the ring of integers of a finite extension of the field of p-adic numbers.. An important theorem in group theory is the localization theorem, demonstrated by A. Beilinson and J. Bernstein, and by J.L. Brylinsky and M. Kashiwara. This is a result about the D-affinity of the flag variety of the generic fiber of G). In mixed characteristic an important progress is found in the work of C. Huyghe and T. Schmidt. They give a partial answer by considering algebraic characters. The first four chapters of this thesis are dedicated to extending this correspondence (the arithmetic localization theorem) for arbitrary characters. In chapters five and six, we will treat the principal objective of this thesis, which concerns admissible locally analytic representations. We will show that for an algebraic character, which is dominant and regular, the category of admissible locally analytic representations, with central character, it is equivalent to the category of coadmissible equivariant arithmetic modules over the family of formal models of the rigid flag variety.
|
2 |
p-adic and mod p local-global compatibility for GLn(ℚp) / La compatibilité local-global p-adique et modulo p pour GLn(ℚp)Qian, Zicheng 02 July 2019 (has links)
Cette thèse est consacrée à deux aspects du programme de Langlands local p-adique et de la compatibilité local-global p-adique.Dans la première partie, j'étudie la question de savoir comment extraire, d'un certain sous-espace Hecke-isotypique de formes automorphes modulo p, suffisament d'invariants d'une représentation galoisienne. Soient p un nombre premier, n>2 un entier, et F un corps à multiplication complexe dans lequel p est complètement décomposé. Supposons qu'une représentation galoisienne automorphe continue r-:Gal(Q-/F)→GLn(F-p) est triangulaire supérieure et suffisament générique ( dans un certain sens ) en une place w au-dessus de p. On montre, en admettant un résultat d'élimination de poids de Serre prouvé dans [LLMPQ], que la classe d'isomorphisme de r-|_Gal(Q-p/Fw) est déterminée par l'action de GLn(Fw) sur un espace de formes automorphes modulo p découpé par l'idéal maximal associée à r- dans une algèbre de Hecke. En particulier, on montre que la partie sauvagement ramifiée de r-|_Gal(Q-p/Fw) est déterminée par l'action de sommes de Jacobi ( vus comme éléments de Fp[GLn(Fp)] ) sur cet espace.La deuxième partie de ma thèse vise à établir une relation entre les résultats précédents de [Schr11], [Bre17] and [BD18]. Soient E une extension finie de Qp suffisamment grande et ρp: Gal(Q-p/Qp)→GL3(E) une représentation p-adique semi-stable telle que la représentation de Weil-Deligne WD(ρp) associée a un opérateur de monodromie N de rang 2 et que la filtration de Hodge associée est non-critique. On sait que la filtration de Hodge de ρp dépend de trois invariants dans E. On construit une famille de représentations localement analytiques Σ^min(λ, L1, L2, L3) qui dépend de trois invariants L1, L2, L3 dans E et telle que chaque représentation contient la représentation localement algébrique Algotimes Steinberg déterminée par ρp. Quand ρp provient, pour un groupe unitaire convenable G/Q, d'une représentation automorphe π de G(A_Q) avec un niveau fixé U^p premier avec p, on montre ( sous quelques hypothèses techniques ) qu'il existe une unique représentation localement analytique dans la famille ci-dessus qui est une sous-représentation du sous-espace Hecke-isotypique associé dans la cohomologie complétée de niveau U^p. On rappelle que [Bre17] a construit une famille de représentations localement analytiques qui dépend de quatre invariants (voir (4) dans [Bre17]) avec une propriété similaire. On donne un critère purement de théorie de représentation: si une représentation Π dans la famille de Breuil se plonge dans un certain sous-espace Hecke-isotypique de la cohomologie complétée, alors elle se plonge nécessairement dans une Σ^min(λ, L1, L2, L3) pour certains choix de L1, L2, L3 dans E qui sont déterminés explicitement par Π. De plus, certains sous-quotients naturels de Σ^min(λ, L1, L2, L3) permettent de construite un complexe de représentations localement analytiques qui "réalise" l'objet dérivé abstrait Σ(λ, underline{L}) defini dans [Schr11]. / This thesis is devoted to two aspects of the p-adic local Langlands program and p-adic local-global compatibility.In the first part, I study the problem of how to capture enough invariants of a local Galois representation from a certain Hecke-isotypic subspace of mod p automorphic forms. Let p be a prime number, n>2 an integer, and F a CM field in which p splits completely. Assume that a continuous automorphic Galois representation r-:Gal(Q-/F)→GLn(F-p) is upper-triangular and satisfies certain genericity conditions at a place w above p, and that every subquotient of r-|_Gal(Q-p/Fw) of dimension >2 is Fontaine-Laffaille generic. We show that the isomorphism class of r-|_Gal(Q-p/Fw) is determined by GLn(Fw)-action on a space of mod p algebraic automorphic forms cut out by the maximal ideal of a Hecke algebra associated to r-, assuming a weight elimination result which is now a theorem to appear in [LLMPQ]. In particular, we show that the wildly ramified part of r-|_Gal(Q-p/Fw) is determined by the action of Jacobi sum operators ( seen as elements of Fp[GLn(Fp)] ) on this space.The second part of my thesis aims at clarifying the relation between previous results in [Schr11], [Bre17] and [BD18]. Let E be a sufficiently large finite extension of Qp and ρp be a p-adic semi-stable representation Gal(Q-p/Qp)→GL3(E) such that the Weil-Deligne representation WD(ρp) associated with it has rank two monodromy operator N and the Hodge filtration associated with it is non-critical. We know that the Hodge filtration of ρp depends on three invariants in E. We construct a family of locally analytic representations Σ^min(λ, L1, L2, L3) of GL3(Qp) depending on three invariants L1, L2, L3 in E with each of the representation containing the locally algebraic representation Algotimes Steinberg determined by ρp. When ρp comes from an automorphic representation π of G(A_Q) with a fixed level U^p prime to p for a suitable unitary group G/Q, we show ( under some technical assumption ) that there is a unique locally analytic representation in the above family that occurs as a subrepresentation of the associated Hecke-isotypic subspace in the completed cohomology with level U^p. We recall that [Bre17] constructed a family of locally analytic representations depending on four invariants ( cf. (4) in [Bre17] ) with a similar property. We give a purely representation theoretic criterion: if a representation Π in Breuil's family embeds into a certain Hecke-isotypic subspace of completed cohomology, then it must equally embed into Σ^min(λ, L1, L2, L3) for certain choices of L1, L2, L3 in E determined explicitly by Π. Moreover, certain natural subquotients of Σ^min(λ, L1, L2, L3) give a true complex of locally analytic representations that realizes the derived object Σ(λ, underline{L}) [Schr11]. Consequently, the family of locally analytic representations Σ^min(λ, L1, L2, L3) give a relation between the higher L-invariants studied in [Bre17] as well as [BD18] and the p-adic dilogarithm function which appears in the construction of Σ^min(λ, L1, L2, L3) in [Schr11].
|
Page generated in 0.1705 seconds