• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 13
  • 12
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

New dynamic subgrid-scale modelling approaches for large eddy simulation and resolved statistical geometry of wall-bounded turbulent shear flow

Wang, BingChen 20 August 2004
This dissertation consists of two parts, i.e. dynamic approaches for subgrid-scale (SGS) stress modelling for large eddy simulation and advanced assessment of the resolved scale motions related to turbulence geometrical statistics and topologies. The numerical simulations are based on turbulent Couette flow. The first part of the dissertation presents four contributions to the development of dynamic SGS models. The conventional integral type dynamic localization SGS model is in the form of a Fredholm integral equation of the second kind. This model is mathematically consistent, but demanding in computational cost. An efficient solution scheme has been developed to solve the integral system for turbulence with homogeneous dimensions. Current approaches to the dynamic two-parameter mixed model (DMM2) are mathematically inconsistent. As a second contribution, the DMM2 has been optimized and a modelling system of two integral equations has been rigorously obtained. The third contribution relates to the development of a novel dynamic localization procedure for the Smagorinsky model using the functional variational method. A sufficient and necessary condition for localization is obtained and a Picard's integral equation for the model coefficient is deduced. Finally, a new dynamic nonlinear SGS stress model (DNM) based on Speziale's quadratic constitutive relation [J. Fluid Mech., 178, p.459, 1987] is proposed. The DNM allows for a nonlinear anisotropic representation of the SGS stress, and exhibits a significant local stability and flexibility in self-calibration. In the second part, the invariant properties of the resolved velocity gradient tensor are studied using recently developed methodologies, i.e. turbulence geometrical statistics and topology. The study is a posteriori based on the proposed DNM, which is different than most of the current a priori approaches based on experimental or DNS databases. The performance of the DNM is further validated in terms of its capability of simulating advanced geometrical and topological features of resolved scale motions. Phenomenological results include, e.g. the positively skewed resolved enstrophy generation, the alignment between the vorticity and vortex stretching vectors, and the pear-shape joint probability function contour in the tensorial invariant phase plane. The wall anisotropic effect on these results is also examined.
12

New dynamic subgrid-scale modelling approaches for large eddy simulation and resolved statistical geometry of wall-bounded turbulent shear flow

Wang, BingChen 20 August 2004 (has links)
This dissertation consists of two parts, i.e. dynamic approaches for subgrid-scale (SGS) stress modelling for large eddy simulation and advanced assessment of the resolved scale motions related to turbulence geometrical statistics and topologies. The numerical simulations are based on turbulent Couette flow. The first part of the dissertation presents four contributions to the development of dynamic SGS models. The conventional integral type dynamic localization SGS model is in the form of a Fredholm integral equation of the second kind. This model is mathematically consistent, but demanding in computational cost. An efficient solution scheme has been developed to solve the integral system for turbulence with homogeneous dimensions. Current approaches to the dynamic two-parameter mixed model (DMM2) are mathematically inconsistent. As a second contribution, the DMM2 has been optimized and a modelling system of two integral equations has been rigorously obtained. The third contribution relates to the development of a novel dynamic localization procedure for the Smagorinsky model using the functional variational method. A sufficient and necessary condition for localization is obtained and a Picard's integral equation for the model coefficient is deduced. Finally, a new dynamic nonlinear SGS stress model (DNM) based on Speziale's quadratic constitutive relation [J. Fluid Mech., 178, p.459, 1987] is proposed. The DNM allows for a nonlinear anisotropic representation of the SGS stress, and exhibits a significant local stability and flexibility in self-calibration. In the second part, the invariant properties of the resolved velocity gradient tensor are studied using recently developed methodologies, i.e. turbulence geometrical statistics and topology. The study is a posteriori based on the proposed DNM, which is different than most of the current a priori approaches based on experimental or DNS databases. The performance of the DNM is further validated in terms of its capability of simulating advanced geometrical and topological features of resolved scale motions. Phenomenological results include, e.g. the positively skewed resolved enstrophy generation, the alignment between the vorticity and vortex stretching vectors, and the pear-shape joint probability function contour in the tensorial invariant phase plane. The wall anisotropic effect on these results is also examined.
13

Development and Optimization of Novel Emulsion Liquid Membranes Stabilized by Non-Newtonian Conversion in Taylor-Couette Flow for Extraction of Selected Organic and Metallic Contaminants

Park, Yonggyun 19 May 2006 (has links)
Extraction processes employing emulsion liquid membranes (ELMs), water-in-oil emulsions dispersed in aqueous phase, have been shown to be highly efficient in removing a variety of organic and inorganic contaminants from industrial wastewaters. As a result, they have been considered as alternative technologies to other more common separation processes such as pressure-driven membrane processes. Unfortunately, a widespread use of the ELM process has been limited due to the instability of emulsion globules against fluid shear. Breakup of emulsions and subsequent release of the internal receptor phase to the external donor phase would nullify the extraction process. Numerous studies have been, therefore, made in the past to enhance the stability of ELMs. Examples include adding more surfactants into the membrane phase and increasing the membrane viscosity. However, increased stability has been unfortunately accompanied by loss in extraction efficiency and rate in most reported attempts. The primary objective of this research is to apply the ELMs in a unique contacting device, a Taylor-Couette column, which provides a relatively low and uniform fluid shear that helps maintaining the stability of emulsion without compromising the extraction efficiency of a target compound. The ELM used in this study is made of membrane phase converted into non-Newtonian fluid by polymer addition, which provides additional uncommon remedy for the problem. This innovative ELM process was optimized to treat various types of simulated industrial wastewaters containing selected phenolic compounds and heavy metals. Experiments performed in this study suggested that the newly developed ELM process achieved exceptionally high overall removal efficiencies for the removal of these target compounds in relatively short contact time. Mechanistic predictive models were further developed and verified with the experimental data. Combined with the experimental data and novel mathematical predictive models, this study is expected to have a high impact on immediate practices of emulsion liquid membrane technologies in relevant industries.
14

Direct numerical simulation of turbulent flow in plane and cylindrical geometries

Komminaho, Jukka January 2000 (has links)
<p>This thesis deals with numerical simulation of turbulentflows in geometrically simple cases. Both plane and cylindricalgeometries are used. The simplicity of the geometry allows theuse of spectral methods which yield a very high accuracy usingrelatively few grid points. A spectral method for planegeometries is implemented on a parallel computer. Thetransitional Reynolds number for plane Couette flow is verifiedto be about 360, in accordance with earlier findings. TurbulentCouette flow at twice the transitional Reynolds number isstudied and the findings of large scale structures in earlierstudies of Couette flow are substantiated. These largestructures are shown to be of limited extent and give anintegral length scale of six half channel heights, or abouteight times larger than in pressure-driven channel flow.Despite this, they contain only about 10 \% of the turbulentenergy. This is demonstrated by applying a very smallstabilising rotation, which almost eliminates the largestructures. A comparison of the Reynolds stress budget is madewith a boundary layer flow, and it is shown that the near-wallvalues in Couette flow are comparable with high-Reynolds numberboundary layer flow. A new spectrally accurate algorithm isdeveloped and implemented for cylindrical geometries andverified by studying the evolution of eigenmodes for both pipeflow and annular pipe flow. This algorithm is a generalisationof the algorithm used in the plane channel geometry. It usesFourier transforms in two homogeneous directions and Chebyshevpolynomials in the third, wall-normal, direction. TheNavier--Stokes equations are solved with a velocity-vorticityformulation, thereby avoiding the difficulty of solving for thepressure. The time advancement scheme used is a mixedimplicit/explicit second order scheme. The coupling between twovelocity components, arising from the cylindrical coordinates,is treated by introducing two new components and solving forthem, instead of the original velocity components. TheChebyshev integration method and the Chebyshev tau method isboth implemented and compared for the pipe flow case.</p>
15

Stability results for viscous shock waves and plane Couette flow

Liefvendahl, Mattias January 2001 (has links)
No description available.
16

Inertial modes, turbulence and magnetic effects in a differentially rotating spherical shell / Instabilities of spherical Couette flow

Barik, Ankit 08 May 2017 (has links)
No description available.
17

Experimental and Numerical Study of Thermal Performance of a Self Contained Drum Motor Drive System (SCDMDS)

Teamah, Ahmed M. January 2023 (has links)
The main focus of this work is to investigate thermal performance of self-contained drum motor drive systems (SCDMDS). All components of a SCDMDS are contained inside a rotating drum including the electric motor, gearbox, and an air/oil multiphase flow. A considerable amount of heat is generated within the SCDMDS from various sources, namely, the electric motor losses, the oil viscous dissipation and the gearbox losses. In meantime, a limited amount of heat is dissipated through the surface of the rotating drum and the side flanges. Therefore, a SCDMDS sometimes encounters a serious overheating problem, which often results in electric motor failure. The different heat generation and dissipation mechanisms as well as the two-phase flow within the SCDMDS have been studied experimentally and numerically under different operating parameters, namely, the oil level (OV), the drum rotational speed (N), the torque (ζ), the number of motor poles (n) and the electric motor dimensions. The effects of rubber lagging material and thickness as well as the use of rubber belts have been investigated as well. The numerical part of the present study has been carried out using Ansys-CFX and was validated using experimental data. Results showed that the optimum oil level (OV) for the best thermal performance is about 65%. The increase in the rotational speed (N) enhanced the heat transfer within the SCDMDS due to the improved oil splashing. Viscous dissipation (VD) between the motor stator and the rotating drive drum was found to be almost negligible. However, oil viscous dissipation within the gap between the motor rotor and stator was found to have an important effect on the thermal performance. An analytical model has been developed and implemented using MATLAB to estimate VD within the motor. The losses from the gearbox were studied experimentally and numerically considering planetary and co-axial gear trains. The numerical work was carried out using the KISSsoft and KISSsys software. Results showed that the increase in the drum rotational speed (N) or the drum torque (ζ) increased the gearbox losses. In the planetary gearbox, any increase in the OV increases the churning losses, however, the increase in OV increased the losses in the co-axial gearbox up to OV = 31% beyond which the losses remained constant. After understanding the complex interplay between all the heat generating and dissipating mechanisms within the SCDMDS, a number of possible modifications have been proposed in order to resolve the overheating problem. The effect of cooling the electric motor by using an axial air flow has been investigated. The effect of adding fins along the inner surface of the outer rotating drum has also been studied. Correlations of the various contributing mechanisms have been developed. Based on a thermal resistance network, a SCDMDS sizing and performance assessment computer software tool in the form of a digital twin (DT) has been developed. A user-friendly interface has been developed using Visual Basics and Excel. The DT estimates temperature distribution and the amount of heat generated and dissipated from each component within the SCDMDS and hence it identifies whether the case is considered safe to operate or overheating is expected. In overheated cases, the DT also suggests several possible modifications the user could consider to resolve the overheating problem. The DT has been validated against several experimental case studies and found to be very reasonably accurate. / Thesis / Doctor of Philosophy (PhD) / This study is focused on investigating heat transfer and fluid flow inside a self-contained drum motor drive system (SCDMDS). The problem of interest involves multiple heat sources enclosed inside a tight space of the rotating drum. There is an electrical motor, gearbox and a multiphase (oil/air) flow inside the rotating drum of the SCDMDS. In this thesis, experimental test rigs were constructed to investigate the effect of a number of operating and geometrical parameters. In addition, numerical analysis of the multiphase oil/air flow was carried out using Ansys - CFX. The KISSsoft and KISSsys software packages were used to determine various types of heat losses within the geartrain. Due to the presence of multiple heat sources inside a confined space, overheating of a number of SCDMDS has been reported. The overheating problem worsened even more when rubber lagging is used to increase traction between the drive drum and the belt. Several correlations have been developed for various heat transfer mechanisms governing the overall thermal performance of the entire SCDMDS. An analytical model (a digital twin) has been developed using Visual Basics and Excel. The digital twin estimates the temperature distribution and the amount of heat generated and dissipated inside the SCDMDS. It has been validated against many case studies provided by the industrial partner. The model identifies the possibility of overheating and provides the user with several potential modifications to resolve it. Hence, the model can be used as a performance and design tool of various models of SCDMDS.
18

Instabilities In Supersonic Couette Flow

Malik, M 06 1900 (has links)
Compressible plane Couette flow is studied with superposed small perturbations. The steady mean flow is characterized by a non-uniform shear-rate and a varying temperature across the wall-normal direction for an appropriate perfect gas model. The studies are broadly into four main categories as said briefly below. Nonmodal transient growth studies and estimation of optimal perturbations have been made. The maximum amplification of perturbation energy over time, G max, is found to increase with Reynolds number Re, but decreases with Mach number M. More specifically, the optimal energy amplification Gopt (the supremum of G max over both the streamwise and spanwise wavenumbers) is maximum in the incompressible limit and decreases monotonically as M increases. The corresponding optimal streamwise wavenumber, αopt, is non-zero at M = 0, increases with increasing M, reaching a maximum for some value of M and then decreases, eventually becoming zero at high Mach numbers. While the pure streamwise vortices are the optimal patterns at high Mach numbers (in contrast to incompressible Couette flow), the modulated streamwise vortices are the optimal patterns for low-to-moderate values of the Mach number. Unlike in incompressible shear flows, the streamwise-independent modes in the present flow do not follow the scaling law G(t/Re) ~ Re2, the reasons for which are shown to be tied to the dominance of some terms (related to density and temperature fluctuations) in the linear stability operator. Based on a detailed nonmodal energy anlaysis, we show that the transient energy growth occurs due to the transfer of energy from the mean flow to perturbations via an inviscid algebraic instability. The decrease of transient growth with increasing Mach number is also shown to be tied to the decrease in the energy transferred from the mean flow (E1) in the same limit. The sharp decay of the viscous eigenfunctions with increasing Mach number is responsible for the decrease of E1 for the present mean flow. Linear stability and the non-modal transient energy growth in compressible plane Couette flow are investigated for the uniform shear flow with constant viscosity. For a given M, the critical Reynolds number (Re), the dominant instability (over all stream-wise wavenumbers, α) of each mean flow belongs different modes for a range of supersonic M. An analysis of perturbation energy reveals that the instability is primarily caused by an excess transfer of energy from mean-flow to perturbations. It is shown that the energy-transfer from mean-flow occurs close to the moving top-wall for “mode I” instability, whereas it occurs in the bulk of the flow domain for “mode II”.For the Non-modal transient growth anlaysis, it is shown that the maximum temporal amplification of perturbation energy, G max,, and the corresponding time-scale are significantly larger for the uniform shear case compared to those for its non-uniform counterpart. For α = 0, the linear stability operator can be partitioned into L ~ L ¯ L +Re2Lp is shown to have a negligibly small contribution to perturbation energy which is responsible for the validity of the well-known quadratic-scaling law in uniform shear flow: G(t/Re) ~ Re2 . In contrast , the dominance of Lp is responsible for the invalidity of this scaling-law in non-uniform shear flow. An inviscid reduced model, based on Ellignsen-Palm-type solution, has been shown to capture all salient features of transient energy growth of full viscous problem. For both modal and non-modal instability, the viscosity-stratification of the underlying mean flow would lead to a delayed transition in compressible Couette flow. Modal and nonmodal spatial growths of perturbations in compressible plane Couette flow are studied. The modal instability at a chosen set of parameters is caused by the scond least-decaying mode in the otherwise stable parameter setting. The eigenfunction is accurately computed using a three-domain spectral collocation method, and an anlysis of the energy contained in the least-decaying mode reveals that the instability is due to the work by the pressure fluctuations and an increased transfer of energy from mean flow. In the case of oblique modes the stability at higher spanwise wave number is due to higher thermal diffusion rate. At high frequency range there are disjoint regions of instability at chosen Reynolds number and Mach number. The stability characteristics in the inviscid limit is also presented. The increase in Mach number and frequency is found to further destabilize the unstable modes for the case of two-dimensional(2D) perturbations. The behaviors of the non-inflexional neutral modes are found to be similar to that of compressible boundary layer. A leading order viscous correction to the inviscid solution reveals that the neutral and unstable modes are destabilized by the no-slip enforced by viscosity. The viscosity has a dual role on the stable inviscid mode. A spatial transient growth studies have been performed and it is found that the transient amplification is of the order of Reynolds number for a superposition of stationary modes. The optimal perturbations are similar to the streamwise invariant perturbations in the temporal setting. Ellignsen & Palm solution for the spatial algebraic growth of stationary inviscid perturbation has been derived and found to agree well with the transient growth of viscous counterpart. This inviscid solution captures the features of streamwise vortices and streaks, which are observed as optimal viscous perturbations. The temporal secondary instability of most-unstable primary wave is also studied. The secondary growth-rate is many fold higher when compared with that of primary wave and found to be phase-locked. The fundamental mode is more unstable than subharmonic or detuned modes. The secondary growth is studied by varying the parameters such as β, Re, M and the detuning parameter.
19

Generalized Couette Flow Of A Herschel-bulkley Fluid Through Eccentric Annulus-an Approximate Solution

Seyidoglu, Tijen 01 January 2006 (has links) (PDF)
ABSTRACT GENERALIZED COUETTE FLOW OF A HERSCHEL - BULKLEY FLUID THROUGH ECCENTRIC ANNULUS - AN APPROXIMATE SOLUTION Seyidoglu, Tijen M.S., Department of Chemical Engineering Supervisor: ismail Tosun Co-Supervisor: Ahmet N. Eraslan January 2006, 134 pages Generalized Couette flow of a Herschel-Bulkley fluid in an eccentric annulus is analyzed by approximating the flow geometry as a slit of variable height. Besides an imposed pressure gradient, one of the plates is considered non-stationary to take into account the axial and/or angular motion of the inner pipe in an eccentric annulus system. Depending on the magnitude and the direction of the applied pressure gradient with respect to the plate velocity, three separate flow cases are studied in which the velocity reaches its maximum value either within the plug flow region or at the moving boundary. Velocity distributions are obtained for each case by solving the equations of continuity and motion. Volumetric flow rate expressions are obtained by integrating the velocity distribution over the cross-sectional area. At a given pressure gradient, the results indicate an increase in volumetric flow rate with an increase in eccentricity ratio. Criteria for each flow type is developed in terms of a dimensionless parameter &amp / #923 / , which takes into account the ratio of the imposed pressure gradient to the plate velocity. Volumetric flow rate expressions for Newtonian, Bingham and power-law fluids are obtained by considering the limiting values of the fluid index and yield stress. The validity of the equations are checked by considering the slit height to be a constant, i.e., flow between parallel plates. Surge/swab pressure calculations are carried out for Herschel-Bulkley, power-law and Bingham fluids and the results are expressed as a function of eccentricity ratio, radius ratio, fluid index and yield stress. The results indicate that when the fluid index and the eccentricity ratio are fixed, a slight increase in the radius ratio causes a tremendous increase in surge/swab pressure, especially for low values of fluid index. On the other hand, displacement of the inner pipe from a concentric position causes a decrease in swab/surge pressure when other parameters are held constant. Comparison with the literature values reveals the fact that flow in an eccentric annulus can be modeled as flow between a slit of variable height as long as the radius ratio is greater than 0.5 and the eccentricity ratio is less than 0.3. The results for other values of radius ratio and eccentricity ratio can be used as initial guess values in carrying out numerical calculations.
20

Charting the State Space of Plane Couette Flow: Equilibria, Relative Equilibria, and Heteroclinic Connections

Halcrow, Jonathan 08 July 2008 (has links)
The study of turbulence has been dominated historically by a bottom-up approach, with a much stronger emphasis on the physical structure of flows than on that of the dynam- ical state space. Turbulence has traditionally been described in terms of various visually recognizable physical features, such as waves and vortices. Thanks to recent theoretical as well as experimental advancements, it is now possible to take a more top-down approach to turbulence. Recent work has uncovered non-trivial equilibria as well as relative periodic orbits in several turbulent systems. Furthermore, it is now possible to verify theoretical results at a high degree of precision, thanks to an experimental technique known as Particle Image Velocimetry. These results squarely frame moderate Reynolds number Re turbulence in boundary shear flows as a tractable dynamical systems problem. In this thesis, I intend to elucidate the finer structure of the state space of moderate Re wall-bounded turbulent flows in hope of providing a more accurate and precise description of this complex phenomenon. Computation of new undiscovered equilibria, relative equilibria, and their heteroclinic connections provide a skeleton upon which a numerically accurate description of turbulence can be framed. The behavior of the equilibria under variation of Reynolds number and cell aspect ratios is also examined. It is hoped that this description of the state space will provide new avenues for research into nonlinear control systems for shear flows as well as quantitative predictions of transport properties of moderate Re fluid flows.

Page generated in 0.0484 seconds