Spelling suggestions: "subject:"coulomb cases"" "subject:"coulomb bases""
1 |
Energies de réseaux et calcul variationnel / Lattices energies and variational calculusBetermin, Laurent 21 September 2015 (has links)
Dans cette thèse, nous étudions des problèmes de minimisation d'énergies discrètes et nous cherchons à comprendre pourquoi une structure périodique peut être un minimiseur pour une énergie d'interaction, c'est ce que l'on appelle un problème de cristallisation. Après avoir montré qu'un réseau de R^d soumis à un certain potentiel paramétré peut être vu comme un minimum local, nous démontrons des résultats d'optimalité du réseau triangulaire parmi les réseaux de Bravais du plan pour certaines énergies par point, avec ou sans densité fixée. Finalement, nous démontrons, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb bidimensionnels, la conjecture de Rakhmanov-Saff-Zhou, c'est-à-dire l'existence d'un terme d'ordre n dans le développement asymptotique de l'énergie logarithmique optimale pour n points sur la sphère unité de R^3. De plus, nous montrons l'équivalence entre la conjecture de Brauchart-Hardin-Saff portant sur la valeur de ce terme d'ordre n et celle de Sandier-Serfaty sur l'optimalité du réseau triangulaire pour une énergie coulombienne renormalisée / In this thesis, we study minimization problems for discrete energies and we search to understand why a periodic structure can be a minimizer for an interaction energy, that is called a crystallization problem. After showing that a given Bravais lattice of R^d submitted to some parametrized potential can be viewed as a local minimum, we prove that the triangular lattice is optimal, among Bravais lattices of R^2, for some energies per point, with or without a fixed density. Finally, we prove, from Sandier and Serfaty works about 2D Coulomb gases, Rakhmanov-Saff-Zhou conjecture, that is to say the existence of a term of order n in the asymptotic expansion of the optimal logarithmic energy for n points on the 2-sphere. Furthermore, we show the equivalence between Brauchart-Hardin-Saff conjecture about the value of this term of order n and Sandier-Serfaty conjecture about the optimality of triangular lattice for a coulombian renormalized energy
|
2 |
Energies de réseaux et calcul variationnel / Lattices energies and variational calculusBetermin, Laurent 21 September 2015 (has links)
Dans cette thèse, nous étudions des problèmes de minimisation d'énergies discrètes et nous cherchons à comprendre pourquoi une structure périodique peut être un minimiseur pour une énergie d'interaction, c'est ce que l'on appelle un problème de cristallisation. Après avoir montré qu'un réseau de R^d soumis à un certain potentiel paramétré peut être vu comme un minimum local, nous démontrons des résultats d'optimalité du réseau triangulaire parmi les réseaux de Bravais du plan pour certaines énergies par point, avec ou sans densité fixée. Finalement, nous démontrons, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb bidimensionnels, la conjecture de Rakhmanov-Saff-Zhou, c'est-à-dire l'existence d'un terme d'ordre n dans le développement asymptotique de l'énergie logarithmique optimale pour n points sur la sphère unité de R^3. De plus, nous montrons l'équivalence entre la conjecture de Brauchart-Hardin-Saff portant sur la valeur de ce terme d'ordre n et celle de Sandier-Serfaty sur l'optimalité du réseau triangulaire pour une énergie coulombienne renormalisée / In this thesis, we study minimization problems for discrete energies and we search to understand why a periodic structure can be a minimizer for an interaction energy, that is called a crystallization problem. After showing that a given Bravais lattice of R^d submitted to some parametrized potential can be viewed as a local minimum, we prove that the triangular lattice is optimal, among Bravais lattices of R^2, for some energies per point, with or without a fixed density. Finally, we prove, from Sandier and Serfaty works about 2D Coulomb gases, Rakhmanov-Saff-Zhou conjecture, that is to say the existence of a term of order n in the asymptotic expansion of the optimal logarithmic energy for n points on the 2-sphere. Furthermore, we show the equivalence between Brauchart-Hardin-Saff conjecture about the value of this term of order n and Sandier-Serfaty conjecture about the optimality of triangular lattice for a coulombian renormalized energy
|
3 |
Résultats exacts et mécanismes de fusion pour les systèmes bidimensionnels / Exact results and melting theories in two-dimensional systemsSalazar, Robert 13 December 2017 (has links)
Les systèmes de nombreuses particules peuvent présenter des comportements variés en fonction du type d’interaction entre ses composants.Dans certaines situations, des structures macroscopiques hautement ordonnées peuvent émerger de telles interactions. Le problème de l’identification des mécanismes qui activent l’ordre microscopique dans les systèmes bidimensionnels a fait l’objet d’études théoriques et expérimentales. Il y a plusieurs décennies, il a été montré que les systèmes bidimensionnels avec des interactions de paramètres d’ordre suffisamment court et d’ordre continu n’ont pas d’ordre à longue portée (ils n’ont pas de phase solide). D’autre part, des études numériques sur des systèmes sans ordre positionnel ont montré que de tels systèmes pourraient présenter des transitions de phase. Cette contradiction apparente dans les systèmes bidimensionnels a été expliquée dans la transition KT (Kosterlitz-Thouless) proposée pour le modèle XY. Depuis lors, on a commencé à observer que les systèmes sans ordre positionnel pouvaient montrer des transitions de phase quand ils avaient un ordre de demi-longue portée (ODLP). Ce type d’ordre est associé à l’ordre d’orientation du système qui est perdu lorsque les défauts topologiques activés par les fluctuations thermiques sont divisés en paires produisant une transition. D’autre part, les systèmes bidimensionnels avec ordre de position à la température T = 0 peuvent être fusionnés dans un scénario comprenant trois phases : solide / hexatique / liquide dont les transitions sont dues à la division en deux étapes de défauts topologiques à deux températures différentes (Théorie de Kosterlitz-Thouless-Halperin-Nelson-Young KTHNY).Ce travail se concentre sur l’ étude du plasma d’un composant bidimensionnel (PUC2d), un système classique de N charges ponctuelles identiques qui interagissent à travers un potentiel électrique et immergées dans une surface bidimensionnelle avec densité de charge opposée. Le système est un cristal à T = 0 qui commence à fondre si T est suffisamment élevé. Si le potentiel d’interaction entre les particules est logarithmique,alors le système dans le plan et la sphère a une solution exacte pour une valeur spéciale de T située dans la phase fluide. Dans cette étude, un formalisme analytique est utilisé pour déterminer exactement les propriétés thermodynamiques et structurelles qui permettent de suivre le comportement du PUC2d en la phase désordonnée jusqu’`a ce que celui-ci cristallise avec la restriction de N pas très grand. Par le formalisme, nous trouvons des connexions intéressantes avec l’ensemble de Ginibre défini dans la théorie des matrices aléatoires.Nous avons effectué des simulations de Monte Carlo pour modéliser le PUC2d avec des interactions potentiel en inverse de distance et des conditions aux limites périodiques dans le plan. Trois phases sont identifiées incluant la phase hexatique pour des systèmes suffisamment grands. Nous avons déterminé par l’analyse de taille finie et la méthode multi-histogramme que la transition hexatique/ liquide est de premier ordre faible. Finalement,une étude statistique sur les arrangements de défauts (clusters) lors de la fusion cristalline est effectuée, confirmant en détail la théorie de KTHNY et décrivant des alternatives pour la détection de transitions en deux dimensions. / Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY-model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.This work is focused on the study of the two dimensional one component plasma 2dOCPa system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNY-theory but also provides alternatives to detect transitions in two-dimensional systems.
|
4 |
On Truncations of Haar Distributed Random MatricesStewart, Kathryn Lockwood 23 May 2019 (has links)
No description available.
|
Page generated in 0.0323 seconds