Spelling suggestions: "subject:"coulombic interaction"" "subject:"coulombica interaction""
1 |
Algorithms for Molecular Dynamics SimulationsHedman, Fredrik January 2006 (has links)
<p>Methods for performing large-scale parallel Molecular Dynamics(MD) simulations are investigated. A perspective on the field of parallel MD simulations is given. Hardware and software aspects are characterized and the interplay between the two is briefly discussed. </p><p>A method for performing <i>ab initio </i>MD is described; the method essentially recomputes the interaction potential at each time-step. It has been tested on a system of liquid water by comparing results with other simulation methods and experimental results. Different strategies for parallelization are explored.</p><p>Furthermore, data-parallel methods for short-range and long-range interactions on massively parallel platforms are described and compared. </p><p>Next, a method for treating electrostatic interactions in MD simulations is developed. It combines the traditional Ewald summation technique with the nonuniform Fast Fourier transform---ENUF for short. The method scales as <i>N log N</i>, where <i>N </i>is the number of charges in the system. ENUF has a behavior very similar to Ewald summation and can be easily and efficiently implemented in existing simulation programs.</p><p>Finally, an outlook is given and some directions for further developments are suggested.</p>
|
2 |
Algorithms for Molecular Dynamics SimulationsHedman, Fredrik January 2006 (has links)
Methods for performing large-scale parallel Molecular Dynamics(MD) simulations are investigated. A perspective on the field of parallel MD simulations is given. Hardware and software aspects are characterized and the interplay between the two is briefly discussed. A method for performing ab initio MD is described; the method essentially recomputes the interaction potential at each time-step. It has been tested on a system of liquid water by comparing results with other simulation methods and experimental results. Different strategies for parallelization are explored. Furthermore, data-parallel methods for short-range and long-range interactions on massively parallel platforms are described and compared. Next, a method for treating electrostatic interactions in MD simulations is developed. It combines the traditional Ewald summation technique with the nonuniform Fast Fourier transform---ENUF for short. The method scales as N log N, where N is the number of charges in the system. ENUF has a behavior very similar to Ewald summation and can be easily and efficiently implemented in existing simulation programs. Finally, an outlook is given and some directions for further developments are suggested.
|
Page generated in 0.0895 seconds