• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apports du couplage non-intrusif en mécanique non-linéaire des structures / Contributions of non-intrusive coupling in nonlinear structural mechanics

Duval, Mickaël 08 July 2016 (has links)
Le projet ANR ICARE, dans lequel s'inscrit cette thèse, vise au développement de méthodes pour l'analyse de structures complexes et de grande taille. Le défi scientifique consiste à investiguer des zones très localisées, mais potentiellement critiques vis-à-vis de la tenue mécanique d'ensemble. Classiquement, sont mis en œuvre aux échelles globale et locale des représentations, discrétisations, modèles de comportement et outils numériques adaptés à des besoins de simulation gradués en complexité. Le problème global est traité avec un code généraliste dans le cadre d'idéalisations topologiques (formulation plaque, simplification géométrique) et comportementale (homogénéisation) ; l'analyse locale quant à elle demande la mise en œuvre d'outils spécialisés (routines, codes dédiés) pour une représentation fidèle de la géométrie et du comportement.L'objectif de cette thèse consiste à développer un outil efficace de couplage non-intrusif pour la simulation multi-échelles / multi-modèles en calcul de structures. Les contraintes de non-intrusivité se traduisent par la non modification de l'opérateur de rigidité, de la connectivité et du solveur du modèle global, ce qui permet de travailler dans un environnement logiciel fermé. Dans un premier temps, on propose une étude détaillée de l'algorithme de couplage global/local non-intrusif. Sur la base d'exemples et de cas-test représentatifs en calcul de structures (fissuration, plasticité, contact...), on démontre l'efficacité et la flexibilité d'un tel couplage. Aussi, une analyse comparative de plusieurs outils d'optimisation de l'algorithme est menée, et le cas de patchs multiples en interaction est traité. Ensuite le concept de couplage non-intrusif est étendu au cas de non-linéarités globales, et une méthode de calcul parallèle par décomposition de domaine avec relocalisation non-linéaire est développée. Cette méthode nous a permis de paralléliser un code industriel séquentiel sur un mésocentre de calcul intensif. Enfin, on applique la méthode de couplage au raffinement de maillage par patchs d'éléments finis. On propose un estimateur d'erreur en résidu explicite adapté au calcul de solutions multi-échelles via l'algorithme de couplage. Puis, sur la base de cet estimateur, on met en œuvre une procédure non-intrusive de raffinement local de maillage. Au travers de ces travaux, un outil logiciel de couplage non-intrusif a été mis au point, basé sur l'échange de données entre différents codes de calcul (protocole Message Passing Interface). Les développements effectués sont intégrés dans une surcouche Python, dont le rôle est de coupler plusieurs instances de Code_Aster, le code d'analyse de structures développé par EDF R&D, lequel sera utilisé dans l'ensemble des travaux présentés. / This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patchs situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear relocalization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh refinement procedure. Through this work, a software tool for non-intrusive coupling was developed, based on data exchange between codes (Message Passing Interface protocol). Developments are integrated into a Python wrapper, whose role is to connect several instances of Code_Aster, the structural analysis code developed by EDF R&D, which will be used in the following work.
2

Couplage AIG/MEG pour l'analyse de détails structuraux par une approche non intrusive et certifiée / IGA/FEM coupling for the analysis of structural details by a non-intrusive and certified approach

Tirvaudey, Marie 27 September 2019 (has links)
Dans le contexte industriel actuel, où la simulation numérique joue un rôle majeur, de nombreux outils sont développés afin de rendre les calculs les plus performants et exacts possibles en utilisant les ressources numériques de façon optimale. Parmi ces outils, ceux non-intrusifs, c’est-à-dire ne modifiant pas les codes commerciaux disponibles mais permettant d’utiliser des méthodes de résolution avancées telles que l’analyse isogéométrique ou les couplages multi-échelles, apparaissent parmi les plus attirants pour les industriels. L’objectif de cette thèse est ainsi de coupler l’Analyse IsoGéométrique (AIG) et la Méthode des Éléments Finis (MEF) standard pour l’analyse de détails structuraux par une approche non-intrusive et certifiée. Dans un premier temps, on développe un lien global approché entre les fonctions de Lagrange, classiquement utilisées en éléments finis et les fonctions NURBS bases de l’AIG, ce qui permet d’implémenter des analyses isogéométriques dans un code industriel EF vu comme une boîte noire. Au travers d’exemples linéaires et non-linéaires implémentés dans le code industriel Code_Aster de EDF, nous démontrons l’efficacité de ce pont AIG\MEF et les possibilités d’applications industrielles. Il est aussi démontré que ce lien permet de simplifier l’implémentation du couplage non-intrusif entre un problème global isogéométrique et un problème local éléments finis. Ensuite, le concept de couplage non-intrusif entre les méthodes étant ainsi possible, une stratégie d’adaptation est mise en place afin de certifier ce couplage vis-à-vis d’une quantité d’intérêt. Cette stratégie d’adaptation est basée sur des méthodes d’estimation d’erreur a posteriori. Un estimateur global et des indicateurs d’erreur d’itération, de modèle et de discrétisation permettent de piloter la définition du problème couplé. La méthode des résidus est utilisée pour évaluer ces erreurs dans des cas linéaires, et une extension aux problèmes non-linéaires via le concept d’Erreur en Relation de Comportement (ERC) est proposée. / In the current industrial context where the numerical simulation plays a major role, a large amount of tools are developed in order to perform accurate and effective simulations using as less numerical resources as possible. Among all these tools, the non-intrusive ones which do not modify the existing structure of commercial softwares but allowing the use of advanced solving methods, such as isogeometric analysis or multi-scale coupling, are the more attractive to the industry. The goal of these thesis works is thus the coupling of the Isogeometric Analysis (IGA) with the Finite Element Method (FEM) to analyse structural details with a non-intrusive and certified approach. First, we develop an approximate global link between the Lagrange functions, commonly used in the FEM, and the NURBS functions on which the IGA is based. It’s allowed the implementation of isogeometric analysis in an existing finite element industrial software considering as a black-box. Through linear and nonlinear examples implemented in the industrial software Code_Aster of EDF, we show the efficiency of the IGA\FEM bridge and all the industrial applications that can be made. This link is also a key to simplify the non-intrusive coupling between a global isogeometric problem and a local finite element problem. Then, as the non-intrusive coupling between both methods is possible, an adaptive process is introduced in order to certify this coupling regarding a quantity of interest. This adaptive strategy is based on a posteriori error estimation. A global estimator and indicators of iteration, model and discretization error sources are computed to control the definition of the coupled problem. Residual base methods are performed to estimated errors for linear cases, an extension to the concept of constitutive relation errors is also initiated for non-linear problems.

Page generated in 0.0646 seconds