Spelling suggestions: "subject:"complexitytheory"" "subject:"complextheory""
31 |
Integration Of High-q Filters With Highly Efficient AntennasYusuf, Yazid 01 January 2011 (has links)
The integration of high-quality (Q)-factor 3-D filters with highly efficient antennas is addressed in this dissertation. Integration of filters and antennas into inseparable units eliminates the transitions between the otherwise separate structures resulting in more compact and efficient systems. The compact, highly efficient integrated 3-D filter/antenna systems, enabled by the techniques developed herein, allow for the realization of integrated RF front ends with significantly- reduced form factors. Integration of cavity filters with slot antennas in a single planar substrate is first demonstrated. Due to the high Q factor of cavity resonators, the efficiency of the integrated filter/antenna system is found to be the same as that of a reference filter with the same filtering characteristics. This means a near 100% efficient slot antenna is achieved within this integrated filter/antenna system. To further reduce the footprint of the integrated systems, vertically integrated filter/antenna systems are developed. We then demonstrate the integration of cavity filters with aperture antenna structures which enable larger bandwidths compared with slot antennas. The enhanced bandwidths are made possible through the excitation and radiation of surface waves. To obtain omnidirectional radiation patterns , we integrate cavity filters with monopole antennas. Finally, the integration of filters with patch antennas is addressed. Unlike the other filter/antenna integration examples presented, in which the antenna is utilized as an equivalent load, the patch antenna provides an additional pole in the filtering function. The presented techniques in this dissertation can be applied for filter/antenna integration in all microwave, and millimeter-wave frequency regions
|
32 |
Multi-Core Fiber and Optical Supersymmetry: Theory and ApplicationsMacho Ortiz, Andrés 02 September 2019 (has links)
[ES] A día de hoy, las redes de comunicaciones de fibra óptica están alcanzando su capacidad límite debido al rápido crecimiento de la demanda de datos en la última década, generado por el auge de los teléfonos inteligentes, las tabletas, las redes sociales, la provisión de servicios en la nube, las transmisiones en streaming y las comunicaciones máquina-a-máquina. Con el fin de solventar dicho problema, se ha propuesto incrementar la capacidad límite de las redes ópticas mediante el reemplazo de la fibra óptica clásica por la fibra óptica multinúcleo (MCF, acrónimo en inglés de multi-core fiber), la cual es capaz de integrar la capacidad de varias fibras ópticas clásicas en su estructura ocupando prácticamente la misma sección transversal que éstas.
Sin embargo, explotar todo el potencial de una fibra MCF requiere entender en profundidad los fenómenos electromagnéticos que aparecen en este tipo de fibras cuando guiamos luz a travésde ellas. Así pues, en la primera parte de la tesis se analizan teóricamente estos fenómenos electromagnéticos y, posteriormente, se estudia la viabilidad de la tecnología MCF en distintos tipos de redes ópticas de transporte, específicamente, en aquellas que hacen uso de transmisiones radio-sobre-fibra. Estos resultados pueden ser de gran utilidad para las futuras generaciones móviles 5G y Beyond-5G en las próximas décadas.
Adicionalmente, con el fin de expandir las funcionalidades básicas de las fibras MCF, esta tesis explora nuevas estrategias de diseño de las mismas utilizando la analogía existente entre las ecuaciones que rigen la mecánica cuántica y el electromagnetismo. Con esta idea en mente, en la segunda parte de la tesis se propone diseñar una nueva clase de fibras MCF usando las matemáticas de la supersimetría, surgida en el seno de la teoría de cuerdas y de la teoría cuántica de campos como un marco teórico de trabajo que permite unificar las interacciones fundamentales de la naturaleza (la nuclear fuerte, la nuclear débil, el electromagnetismo y la gravedad). Girando en torno a esta idea surgen las fibras MCF supersimétricas, las cuales nos permiten procesar la información de los usuarios durante la propia propagación de la luz a través de ellas, reduciendo así la complejidad del procesado de datos del usuario en recepción.
Finalmente, esta tesis se completa introduciendo un cambio de paradigma que permite diseñar dispositivos fotónicos disruptivos. Demostramos que la supersimetría de mecánica cuántica no relativista, propuesta como una serie de transformaciones matemáticas restringidas al dominio espacial, se puede extender también al dominio del tiempo, al menos dentro del marco de trabajo de la fotónica. Como resultado de nuestras investigaciones, demostramos que la supersimetría temporal puede convertirse en una plataforma prometedora para la fotónica integrada ya que nos permite diseñar nuevos dispositivos ópticos versátiles y ultra-compactos que pueden jugar un papel clave en los procesadores del futuro.
Asimismo, con el fin de hacer los resultados principales de esta tesis doctoral lo más generales posibles, se detalla cómo poder extrapolarlos a otros campos de la física como acústica y mecánica cuántica. / [CA] Avui en dia, les xarxes de comunicacions de fibra òptica estan aconseguint la seua capacitat límit a causa del ràpid creixement de la demanda de dades duante l'última dècada, generat per l'auge dels telèfons intel·ligents, les tablets, les xarxes socials, la provisió de servicis en la núvol, les transmissions en streaming i les comunicacions màquina-a-màquina. Per a resoldre el dit problema, s'ha proposat incrementar la capacitat límit de les xarxes òptiques per mitjà del reemplaçament de la fibra òptica clàssica per la fibra òptica multinúcleo (MCF, acrònim en anglés de multi-core fiber), la qual és capaç d'integrar la capacitat de diverses fibres òptiques clàssiques en la seua estructura ocupant pràcticament la mateixa secció transversal que estes.
Tanmateix, explotar tot el potencial d'una fibra MCF requereix entendre en profunditat els fenòmens electromagnètics que apareixen en aquestes fibres quan guiem llum a través d'elles. Així, doncs, en la primera part de la tesi analitzem teòricament aquests fenòmens electromagnètics i, posteriorment, estudiem la viabilitat de la tecnologia MCF en distints tipus de xarxes òptiques de transport, específicament, en aquelles que fan ús de transmissions ràdio-sobre-fibra. Estos resultats poden ser de gran utilitat per a les futures generacions mòbils 5G i Beyond-5G en les pròximes dècades.
Addicionalment, a fi d'expandir les funcionalitats bàsiques de les fibres MCF, esta tesi explora noves estratègies de disseny de les mateixes utilitzant l'analogia existent entre les equacions que regixen la mecànica quàntica i l'electromagnetisme. Amb aquesta idea en ment, en la segona part de la tesi proposem dissenyar una nova classe de fibres MCF usant les matemàtiques de la supersimetria, sorgida en el si de la teoria de cordes i de la teoria quàntica de camps com un marc teòric de treball que permet unificar les interaccions fonamentals de la natura (la nuclear forta, la nuclear feble, l'electromagnetisme i la gravetat). Al voltant d'aquesta idea sorgeixen les fibres MCF supersimètriques, les quals ens permeten processar la informació dels usuaris durant la pròpia propagació de la llum a través d'elles, reduint així la complexitat del processament de dades de l'usuari a recepció.
Finalment, esta tesi es completa introduint un canvi de paradigma que permet dissenyar dispositius fotónicos disruptius. Demostrem que la supersimetria de mecànica quàntica no relativista, proposta com una sèrie de transformacions matemàtiques restringides al domini espacial, es pot estendre també al domini del temps, almenys dins del marc de treball de la fotónica. Com resultat de les nostres investigacions, demostrem que la supersimetria temporal pot convertir-se en una plataforma prometedora per a la fotònica integrada ja que ens permet dissenyar nous dispositius òptics versàtils i ultracompactes que poden jugar un paper clau en els processadors del futur.
Per tal de fer els resultats principals d'aquesta tesi doctoral el més generals possibles, es detalla com poder extrapolar-los a altres camps de la física com ara la acústica i la mecànica quàntica. / [EN] To date, communication networks based on optical fibers are rapidly approaching their capacity limit as a direct consequence of the increment of the data traffic demand in the last decade due to the ubiquity of smartphones, tablets, social networks, cloud computing applications, streaming services including video and gaming, and machine-to-machine communications. In such a scenario, a new class of optical fiber which is able to integrate the capacity of several classical optical fibers approximately in the same transverse section as that of the original one, the multi-core fiber (MCF), has been recently proposed to overcome the capacity limits of current optical networks.
However, the possibility of exploiting the full potential of an MCF requires to deeply understand the electromagnetic phenomena that can be observed when guiding light in this optical medium. In this vein, in the first part of this thesis, we analyze theoretically these phenomena and, next, we study the suitability of the MCF technology in optical transport networks using radio-over-fiber transmissions. These findings could be of great utility for 5G and Beyond-5G cellular technology in the next decades.
In addition, the close connection between the mathematical framework of quantum mechanics and electromagnetism becomes a great opportunity to explore ground-breaking design strategies of these new fibers that allow us to expand their basic functionalities. Revolving around this idea, in the second part of this thesis we propose to design a new class of MCFs using the mathematics of supersymmetry (SUSY), emerged within the context of string and quantum field theory as a means to unify the basic interactions of nature (strong, electroweak, and gravitational interactions). Interestingly, a supersymmetric MCF will allow us, not only to propagate the light, but also to process the information of users during propagation.
Finally, we conclude this thesis by introducing a paradigm shift that allows us to design disruptive optical devices. We demonstrate that the basic ideas of SUSY in non-relativistic quantum mechanics, restricted to the space domain to clarify unsolved questions about SUSY in string and quantum field theory, can also be extended to the time domain, at least within the framework of photonics. In this way, it is shown that temporal supersymmetry may serve as a key tool to judiciously design versatile and ultra-compact optical devices enabling a promising new platform for integrated photonics.
For the sake of completeness, we indicate how to extrapolate the main results of this thesis to other fields of physics, such as acoustics and quantum mechanics. / Macho Ortiz, A. (2019). Multi-Core Fiber and Optical Supersymmetry: Theory and Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/124964
|
33 |
Synchronization phenomena in light-controlled oscillatorsRamirez Avila, Gonzalo 02 February 2004 (has links)
Le but de cette thèse est d'étudier d'une façon expérimentale et théorique le comportement synchrone d'un groupe d'oscillateurs contrôlés par la lumière (LCOs). Ces LCOs sont très simples du point de vue électronique et ont la propriété d'imiter le comportement des lucioles puisqu'ils interagissent par des impulsions de lumière. En même temps, les LCOs sont une bonne approche pour étudier d'autres systèmes qui agissent comme des oscillateurs d'intégration et de tir car un LCO est un oscillateur de relaxation à deux échelles de temps :un long processus de charge alterné avec un très court processus de décharge. Une série d'expériences a été menée pour pouvoir comprendre le processus de synchronisation des LCOs. Nous avons trouvé que l'acquisition de la synchronisation est due aux effets de la perturbation à savoir: le raccourcissement de la charge et l'allongement de la décharge. Les mesures expérimentales ainsi que la physique liée aux LCOs nous ont permis de formuler un modèle qui a été utilisé pour trouver d'une façon analytique la courbe de réponse de phase (PRC) qui caractérise un LCO.<p><p>Le modèle a ensuite été validé en comparant les résultats expérimentaux et théoriques. Le modèle reproduit même, le phénomène de bifurcation qui apparaît lorsque trois LCOs sont couplés et disposés en ligne :deux états stables différents apparaissent selon les conditions initiales. L'accord trouvé entre théorie et expérience nous permet d'utiliser le modèle pour étudier d'autres situations qui ne sont pas facilement abordables du point de vue expérimental.<p><p>Nous avons étudié analytiquement deux LCOs identiques couplés. Même pour ce cas idéal, nous étions obligés de faire des simplifications pour pouvoir trouver des solutions exactes. On a trouvé pour ce système deux états possibles qui dépendent des conditions initiales, la synchronisation (stable) et l'anti-synchronisation (instable). Nous avons également montré que le temps de synchronisation augmente avec la distance entre LCOs. La construction des langues d'Arnold (régions de synchronisation) nous a permis de distinguer des régions de synchronisation pure d'ordre n:m et des régions de superposition synchronisation--modulation.<p><p>Nous avons travaillé numériquement avec des systèmes de LCOs affectés de bruits uniforme et Gaussien. Le comportement synchrone de ce système a été caractérisé en utilisant des paramètres statistiques simples tels que la moyenne de la différence de phase linéaire et la variance de la différence de phase cyclique. Nous avons démontré que le bruit, bien qu'il puisse perturber la synchronisation, peut aussi la favoriser entre deux LCOs qui ne se synchroniseraient pas en conditions normales, surtout quand le bruit est Gaussien et que les variances du bruit ne sont pas égales.<p><p>Nous avons étudié en termes statistiques la synchronisation de LCOs couplés localement et arrangés en ligne, en anneau et en réseau. Nous avons montré que la synchronisation totale se produit plus facilement pour des LCOs disposés en anneau. Concernant le temps de synchronisation, il est imprédictible. Les résultats analytiques et numériques suggèrent que la synchronisation totale est le phénomène le plus probable quand le nombre d'oscillateurs n'est pas très grand.<p><p>Finalement, nous avons étudié des LCOs statiques et mobiles couplés globalement. Dans les deux cas, nous avons trouvé que la synchronisation est moins probable quand le nombre d'oscillateurs augmente. Pour la condition statique, en considérant un couplage du type champ moyen, nous avons observé que le temps de synchronisation diminue avec le nombre de LCOs. Cependant, pour la situation plus réaliste dans laquelle l'interaction entre LCOs dépend de la distance les séparant, le temps de synchronisation devient à nouveau imprédictible. Enfin, nous avons étudié l'influence de la mobilité sur la synchronisation, problème qui est important en biologie et en robotique.<p><p>Notre système, de par ses caractéristiques et sa base expérimentale, est beaucoup plus proche de la réalité que ceux considérés d'habitude dans la littérature. Les résultats obtenus peuvent s'appliquer à des systèmes biologiques (lucioles, cellules cardiaques, neurones, …), mais également à la robotique, où la communication à longue portée par la lumière et l'émergence de patterns de synchronisation pourraient être très utiles dans le but d'effectuer des tâches spécifiques. / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
|
34 |
Generation of Photon Pairs in Fiber MicrocouplersCheng, Xinru January 2017 (has links)
Due to its inherent stability and compactness, integrated optics can allow for experimental complexity not currently achievable with bulk optics. This opens up the possibility for large-scale quantum technological applications, such as quantum communication networks and quantum information processing. Quantum information processing relies on efficient sources of entangled photon pairs. Most demonstrations in integrated photonics so far have featured the on-chip manipulation of photon states using a free-space bulk-optic source of photons. This has the drawback of introducing loss due to the spatial mode mismatch between waveguide modes of the chip and modes of the produced photons. In this way, loss limits the number of photons that are simultaneously carried in the integrated optical device, and thus limits the number of qubits. One way to avoid this loss is to generate the photons in another waveguide device. This can be done through, for example, spontaneous four-wave mixing (SFWM). In this third-order nonlinear process, two pump photons spontaneously scatter off each other to create two photons of two new frequencies, satisfying momentum and energy conservation. This has been studied in birefringent optical fibers and photonic crystal fibers.
In this work, we investigate the SFWM generation of photons in a waveguide coupler comprised of two touching tapered optical fibers, which we call a microcoupler. The two silica fibers are kept in contact and tapered to be 1 micron in diameter in the 10 cm long uniform interaction region. This device has three main advantages over a standard telecom 2x2 fiber coupler. 1) The small mode area enhances the photon generation rate; 2) The microcoupler supports four modes which is the minimum number required for two-photon entanglement. So in principle the device should be able to produce polarization-entangled photon pairs; 3) The strong waveguide-waveguide coupling and waveguide dispersion (due to the tapering) forces the photons to be far in wavelength from the background light around the pump. We present the 28 allowed phasematching processes for the microcoupler, as well as predict the frequencies of the generated photons. We report the first experimental observation of photon pairs produced via SFWM in a microcoupler. We also analyze the polarization state of the observed photons to figure out which phasematching processes are responsible for generating the photons.
We expect to observe more photon pairs in future devices, with the ultimate goal being the generation of polarization-entangled photon pairs for integrated optics.
|
35 |
Multiresonant Plasmonics with Spatial Mode OverlapSafiabadi Tali, Seied Ali 03 February 2022 (has links)
Plasmonic nanostructures can enhance light-matter interactions in the subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional plasmonic devices are optimized to operate in a single wavelength band, which is not efficient for wavelength-multiplexed operations and quantum optical applications involving multi-photon nonlinear processes at multiple wavelength bands. Overcoming the limitations of single-resonant plasmonics requires development of plasmonic devices that can enhance the optical interactions at the same locations but at different resonance wavelengths. This dissertation comprehensively studies the theory, design, and applications of such devices, called "multiresonant plasmonic systems with spatial mode overlap". We start by a literature review to elucidate the importance of this topic as well as its current and potential applications. Then, we briefly discuss the fundamentals of plasmonic resonances and mode hybridization to thoroughly explore, classify, and compare the different architectures of the multiresonant plasmonic systems with spatial mode overlap. Also, we establish the black-box coupled mode theory to quantify the coupling of optical modes and analyze the complicated dynamics of optical interactions in multiresonant plasmonic systems. Next, we introduce the nanolaminate plasmonic crystals (NPCs), wafer-scale metamaterials structures that support many (>10) highly-excitable plasmonic modes with spatial overlap across the visible and near-infrared optical bands. The enabling factors behind the NPC's superior performance as multiresonant systems are also theoretically and experimentally investigated. After that, we experimentally demonstrate the NPCs application in simultaneous second harmonic generation and anti-Stokes photoluminescence (ASPL) with controllable nonlinear emission properties. By designing specific non-linear optical experiments and developing advanced ASPL models, this work addresses some important but previously unresolved questions on the ASPL mechanism as well. Finally, we conclude the dissertation by discussing the potential applications of out-of-plane plasmonic systems with spatial mode overlap in wavelength-multiplexed devices and presenting some preliminary results. / Doctor of Philosophy / Emergence of electronic devices such as cellphones and computers has revolutionized our lifestyles over the past century. By manipulating the flow/storage of electrons at the nanometer scale, electronic components can be very compact, but their speed and energy performance is ultimately limited due to ohmic losses and finite velocity of the electrons. In parallel, photonic devices and circuits have been proposed that by molding the flow of light can overcome the mentioned limitations but are not as integrable as their electronic counterparts. Plasmonics is an emerging research field that combines electronics and photonics using nanostructures that can couple the light waves to the free electrons in metals. By confining the light at deep subwavelength scales, plasmonic devices can highly enhance the light-matter interactions, with applications in ultrafast optical communications, energy-harvesting, optical sensing, and biodetection. Conventionally, plasmonic devices are optimized to operate with a single light color, which limits their performance in wavelength-multiplexed operations and ultrafast non-linear optics. For such applications, it is far more efficient to use the more advanced "multiresonant plasmonic systems with spatial mode overlap" that can enhance the optical interactions at the same locations but for multiple light colors. This dissertation comprehensively studies these systems in terms of the fundamental concepts, design ideas, and applications. Our work advances the plasmonic field from both science and technology perspectives. In particular, we explore and classify the strategies of building multiresonant plasmonic systems with spatial mode overlap for the first time. Also, we establish the black-box coupled mode theory, a novel framework for analysis and design of complicated plasmonic structures with optimized performance. Furthermore, we introduce the "nanolaminate plasmonic crystals" (NPCs), large area and cost-effective devices that can enhance the optical processes for both visible and near-infrared lights. Finally, we demonstrate NPCs ability in simultaneous frequency-doubling and broadband emission of light and come up with advanced theoretical models that can explain the light generation and color conversion in plasmonic devices.
|
36 |
Dynamics of coupled micro-oscillators = Dinâmica de micro-osciladores acoplados / Dinâmica de micro-osciladores acopladosLuiz, Gustavo de Oliveira, 1988- 05 September 2017 (has links)
Orientador: Gustavo Silva Wiederhecker / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-09-02T10:33:51Z (GMT). No. of bitstreams: 1
Luiz_GustavoDeOliveira_D.pdf: 5507367 bytes, checksum: 506db63a5a93a33d67a84dbb1f7b33ce (MD5)
Previous issue date: 2017 / Resumo: Nas últimas décadas a optomecânica de microcavidades chamou a atenção de cientistas e engenheiros, que encontraram na interação entre luz e ondas acústicas aplicações que variam de sensores de massa com resolução atômica, até a preparação de estados quânticos de osciladores harmônicos mesoscópicos, passando por simuladores quânticos, filtros ópticos controláveis opticamente, criação de estados topológicos para luz e fônons, apenas citando alguns exemplos. Apesar das diversas demonstrações de vários dispositivos, sendo discos e cristais fotônicos os formatos mais comuns, há ainda um grande esforço no sentido de aperfeiçoá-los reduzindo perdas ópticas e mecânicas e suprimindo outros fenômenos de óptica não-linear, como absorção de dois fótons, que podem impedir seu funcionamento apropriado. Como ressonadores ópticos e mecânicos tipicamente compartilham a mesma estrutura nestes dispositivos, seus projetos são acoplados, dificultando o aprimoramento independente de cada um. Nesta tese usamos dispositivos optomecânicos de campo próximo, cuja interação entre modos mecânicos e ópticos se dá através do campo evanescente do último, para desacoplar o projeto mecânico do óptico, o que nos permitiu estudar a otimização do ressonador mecânico sem qualquer efeito sobre a cavidade óptica. Com um ressonador mecânico de silício composto por dois osciladores acoplados, pudemos demonstrar que o correto equilíbrio das massas de cada oscilador é um método simples e eficiente para suprimir as perdas devido à radiação de energia mecânica para o substrato na escala de frequência de 50 MHz. Este processo permitiu que fatores de qualidade limitados por perdas relacionadas ao material e à superfície, da ordem de 10 mil à temperatura ambiente e de 50 mil a aproximadamente 25 K, fossem obtidos. Também observamos nestes dispositivos o fenômeno de auto-pulsação, que apresenta uma dinâmica própria tão interessante quanto a optomecânica, apesar de impedir a operação apropriada dos osciladores optomecânicos. Estudamos este fenômeno separadamente e demonstramos que estes pulsos, ocorrendo em duas cavidades ópticas acopladas por seus campos evanescentes, podem sincronizar com o campo óptico sendo o único intermediador. Ambas as demonstrações têm implicações importantes, abrindo caminho para o desenvolvimento de novas plataformas de interesse tanto científico quanto tecnológico, como estruturas para o estudo de estados topológicos para a luz e para ondas acústicas e geradores de sinal de radio-frequência de alto desempenho. Além disso, os dispositivos foram todos produzidos em uma fábrica comercial, o que também demonstra que sua fabricação está pronta para ser escalada para produção em massa / Abstract: Cavity optomechanics in the micro-scale has attracted the attention of scientists and engineers on the last few decades, who encountered applications to the interaction of light and acoustic waves ranging from atomic resolution mass sensors to the preparation of quantum states of mesoscopic harmonic oscillators, passing by quantum simulators, optically controllable optical filters, formation of topological states for both photons and phonons, just to mention a few examples. Although various devices have been demonstrated, with disks and photonics crystals being the most common designs, there is still a large effort to improve them by reducing optical and mechanical losses and suppressing other non-linear phenomena, such as two-photon absorption, that may affect their proper operation. Because optical and mechanical resonators typically share the same structure in these devices, their designs are coupled, which complicates the independent improvement of each one. In this thesis we used near-field optomechanical devices, whose mechanical modes interact with the optical through the latter¿s evanescent field, to decouple the mechanical design from the optical, what allowed us to focus all attention on the mechanical resonator. With a silicon mechanical resonator composed of two coupled oscillators, we could demonstrate that the correct balance of the masses of the oscillators is an efficient and simple way to suppress losses due to energy radiation to the substrate at the 50 MHz frequency range. This strategy led to material and surface limited quality factors close to 10k at room temperature and 50k at approximately 25 K. We also observed the phenomenon of self-pulsing in these devices, which presents dynamics as interesting as the optomechanical interactions do, in spite of being a problem for the proper operation of the optomechanical devices. We studied this phenomenon separately and demonstrated that these pulses, when occurring in two evanescently coupled optical cavities, may synchronize with the optical field being the sole intermediary. These two demonstrations have important implications, paving the way for new platforms of scientific and technological interest, such as structures for the study of topological states for both light and acoustic weaves as well as high efficiency radio-frequency signal generators. Moreover, these devices were all fabricated in a commercial foundry, which also demonstrates that the fabrication of such technology is ready to be scaled up to mass production / Doutorado / Física / Doutor em Ciências / 153044/2013-6 / CNPQ
|
37 |
Metallic nanostructures for enhanced sensing and spectroscopyAhmed, Aftab 10 August 2012 (has links)
The interaction of light and matter at nanoscale is the subject of study of this dissertation. Particularly, the coupling of light to surface plasmons and their applications in the fields of spectroscopy and sensing is the focus of this work. In terms of spectroscopy, the simple reason of using light to study the chemical structures of different materials is the fact that the energy of light lies in the range of vibrational and electronic transitions of matter. Further, the ability to squeeze light to subwavelength dimensions opens up new possibilities of designing nano-optical devices. In this work we explore surface plasmons for two major applications: (i) Directivity enhanced Raman spectroscopy and (ii) Chemical/biological sensing.
Here a new enhancement phenomenon has been demonstrated experimentally in regards to Raman spectroscopy. Typically, Raman enhancement is considered in terms of local fields only. Here we show the use of directive nanoantennas to provide additional enhancement of two orders of magnitude. The nanoantenna design is optimal in the sense that almost all of the scattered light is coupled into the numerical aperture of the collecting lens. It is shown that the additional enhancement from directivity pushes the sensitivity to single molecule regime. Further, the out of plane radiation and simplicity of the design makes it an ideal candidate for use with typical commercial microscope setups.
Extra ordinary transmission through nanohole arrays in metallic films is studied for refractive index sensing. Bulk resolution of 6×10-7 is demonstrated by optimizing array dimensions, wavelength of operation, noise reduction and consideration of sensitivity of the detecting CCD camera.
Self-assembled nanostructures are investigated for spectroscopic applications. Time dependent studies of nanorods assembled in end-to-end and side-by-side configurations are conducted. The end-to-end configuration results in higher local field enhancements whereas; the side-by-side configuration shows a reduction in local fields because of the cancellation of radial field components between the neighbouring nanorods. It should be noted that higher fields are desirable for Raman spectroscopy.
Grating structures have been analysed using reduced coupled mode theory. In most cases, only three lowest order modes prove to be sufficient for accurate description of the system response. Here we present design guidelines for broadband operation and optimization of high quality factor resonators.
Finally the complex reflection coefficient from arbitrary terminated nanorods has been investigated. Phase of reflection plays an important role in the determination of resonance wavelength of nanoantennas. It is shown that the localized surface plasmon resonance of nanoparticles can be considered in terms of propagating surface plasmons along a nanorod of similar geometry where the length of the nanorod approaches zero accompanied with π degrees of phase of reflection.
The contributions made in this work can prove useful in the fields of analytical chemistry and biomedical sensing. The directive nanoantenna can find applications in a number of areas such as light emitting devices, photovoltaics, single photon sources and high resolution microscopy. Our work related to EOT based sensing is already approaching the resolution of commercially available refractive index sensors with the added advantage of multiplexed detection. / Graduate
|
38 |
Pulse Shaping Based on Integrated Waveguide GratingsKultavewuti, Pisek 25 July 2012 (has links)
Temporal pulse shaping based on integrated Bragg gratings is investigated in this work to achieve arbitrary output waveforms. The grating structure is simulated based on the sidewall-etching geometry in an AlGaAs platform. The inverse scattering employin the Gel'fan-Levithan-Marchenko theorem and the layer peeling method provides a tool to determine grating structures from a desired spectral reflection response. Simulations of pulse shaping considered flat-top and triangular pulses as well as one-to-one and one-to-many pulse shaping. The suggested grating profiles revealed a compromise between performance and grating length. The integrated grating, a few hundred microns in length, could generate flat-top pulses with pulse durations as short as 500 fs with rise/fall times of 200 fs; the results are comparable to previous work in free-space optics and fiber optics. The theories and the devised algorithms could serve as a design station for advanced grating devices for, but not restricted to, optical pulse shaping.
|
39 |
Pulse Shaping Based on Integrated Waveguide GratingsKultavewuti, Pisek 25 July 2012 (has links)
Temporal pulse shaping based on integrated Bragg gratings is investigated in this work to achieve arbitrary output waveforms. The grating structure is simulated based on the sidewall-etching geometry in an AlGaAs platform. The inverse scattering employin the Gel'fan-Levithan-Marchenko theorem and the layer peeling method provides a tool to determine grating structures from a desired spectral reflection response. Simulations of pulse shaping considered flat-top and triangular pulses as well as one-to-one and one-to-many pulse shaping. The suggested grating profiles revealed a compromise between performance and grating length. The integrated grating, a few hundred microns in length, could generate flat-top pulses with pulse durations as short as 500 fs with rise/fall times of 200 fs; the results are comparable to previous work in free-space optics and fiber optics. The theories and the devised algorithms could serve as a design station for advanced grating devices for, but not restricted to, optical pulse shaping.
|
40 |
Concepção otima de sistemas elasto-acusticos interiores acoplados / Optimal conception of coupled internal elasto-acoustics systemsPaucar Casas, Walter Jesus 02 April 1998 (has links)
Orientador: Renato Pavanello / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-23T16:29:26Z (GMT). No. of bitstreams: 1
PaucarCasas_WalterJesus_D.pdf: 11209231 bytes, checksum: ed76027cff17f4a62e9dfcff2f0e03d2 (MD5)
Previous issue date: 1998 / Resumo: Neste trabalho desenvolveram-se metodologias para a obtenção de formas ótimas em sistemas vibroacústicos acoplados, via mudança de parâmetros geométricos, usando a análise de sensibilidade e ferramentas de programação não linear. As equações matriciais do problema são determinadas com o método dos elementos finitos, e expostas de forma a se tornarem dependentes dos parâmetros estruturais. Uma formulação não simétrica em deslocamento da estrutura e pressão do fluido é utilizada para descrever o sistema. Obtidas as freqüências e modos próprios para um conjunto de parâmetros, executa-se o processo de otimização usando a análise de sensibilidade modal. O objetivo é maximizar o afastamento de freqüências naturais adjacentes, ou diminuir a resposta numa região do sistema para uma faixa predefinida de freqüências de excitação, modificando para isso os parâmetros de forma. O efeito do amortecimento proporcional é incluído na modelagem. Os resultados obtidos são validados a partir de soluções numéricas disponíveis na literatura. A utilização da predição modal no processo de otimização também é analisada. A implementação da metodologia desenvolvida encontra aplicação, por exemplo, na melhora do conforto vibroacústico / Abstract: In this research some methodologies for obtaining optimal forms in coupled vibroacoustic problems are developed, through geometrical parameter changing, using sensitivity analysis and non linear programming tools. The matrix equations of the problem are determined through the finite element method, and then put in such a form that they become functions of the structural parameters. A non symmetrical formulation in structural displacement and tluid pressure is used to describe the system. Once the natural frequencies and modes for a set of parameters are found, the optimization process is conducted using the modal sensitivity analysis. The objective is either to maximize the gap between some adjacent natural frequencies,or to minimizethe frequency response in a specific region of the system for one set of excitation frequencies.This is done by modifying the shape parameters. The effect of proportional damping is included in the model. The results are validated with numerical solutions available in the literature. Additional results using the modal prediction in the optimization are also analyzed. The implemented methodology can be applied, for example, in the improvement of the vibroacoustic confort / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica
|
Page generated in 0.1 seconds