1 |
Optical Parametric Amplification in Orientation-Patterned GaAs WaveguidesDeShano, Bradley R. 23 May 2016 (has links)
No description available.
|
2 |
Generation of Photon Pairs in Fiber MicrocouplersCheng, Xinru January 2017 (has links)
Due to its inherent stability and compactness, integrated optics can allow for experimental complexity not currently achievable with bulk optics. This opens up the possibility for large-scale quantum technological applications, such as quantum communication networks and quantum information processing. Quantum information processing relies on efficient sources of entangled photon pairs. Most demonstrations in integrated photonics so far have featured the on-chip manipulation of photon states using a free-space bulk-optic source of photons. This has the drawback of introducing loss due to the spatial mode mismatch between waveguide modes of the chip and modes of the produced photons. In this way, loss limits the number of photons that are simultaneously carried in the integrated optical device, and thus limits the number of qubits. One way to avoid this loss is to generate the photons in another waveguide device. This can be done through, for example, spontaneous four-wave mixing (SFWM). In this third-order nonlinear process, two pump photons spontaneously scatter off each other to create two photons of two new frequencies, satisfying momentum and energy conservation. This has been studied in birefringent optical fibers and photonic crystal fibers.
In this work, we investigate the SFWM generation of photons in a waveguide coupler comprised of two touching tapered optical fibers, which we call a microcoupler. The two silica fibers are kept in contact and tapered to be 1 micron in diameter in the 10 cm long uniform interaction region. This device has three main advantages over a standard telecom 2x2 fiber coupler. 1) The small mode area enhances the photon generation rate; 2) The microcoupler supports four modes which is the minimum number required for two-photon entanglement. So in principle the device should be able to produce polarization-entangled photon pairs; 3) The strong waveguide-waveguide coupling and waveguide dispersion (due to the tapering) forces the photons to be far in wavelength from the background light around the pump. We present the 28 allowed phasematching processes for the microcoupler, as well as predict the frequencies of the generated photons. We report the first experimental observation of photon pairs produced via SFWM in a microcoupler. We also analyze the polarization state of the observed photons to figure out which phasematching processes are responsible for generating the photons.
We expect to observe more photon pairs in future devices, with the ultimate goal being the generation of polarization-entangled photon pairs for integrated optics.
|
3 |
Développements et nouveaux concepts pour les lasers solides ultraviolets / New concepts and developments for ultraviolet solid state lasersDeyra, Loïc 09 October 2014 (has links)
Au cours de cette thèse, nous étudions de nouveaux concepts et architectures lasers pour la réalisation de lasers solides pompes par diode de forte puissance convertis dans l’ultraviolet (UV). Ce type de laser est de plus en plus utilise pour de nombreuses applications d’usinage et de spectroscopie. Nous démontrons d’abord une architecture laser originale a 236,5 nm basée sur la conversion de fréquence d’un oscillateur laser impulsionnel nanoseconde utilisant une fibre cristalline de Nd :YAG émettant a 946 nm. En étudiant les diverses limitations de ce type de laser et en optimisant les deux étages de conversion de fréquence, nous sommes parvenus a démontrer des performances record dans l’ultraviolet, bien au-dessus de l’état de l’art. Puis, dans le cadre du consortium ANR ≪ UV-Challenge ≫, nous avons étudié deux nouveaux cristaux non-linéaires pour la conversion de fréquence vers l’UV : le Ca5(BO3)3F (CBF), un nouveau cristal non-linéaire non-hygroscopique pour la génération de troisième harmonique a 343 nm, ainsi qu’un cristal bien connu, le BaB2O4 (BBO), mais réalise avec une méthode de croissance non-standard, la méthode Czochralski. Nous avons démontré les premiers résultats de génération d’ultraviolet a 343 nm avec le CBF, et montre que la méthode de croissance Czochralski permettait d’obtenir des cristaux de BBO plus efficaces pour la génération de quatrième harmonique a 257 nm a forte puissance moyenne. Enfin, nous avons proposé et démontré un nouveau concept pour la conversion de fréquence, l’accord de phase mécanique. En exerçant de fortes pressions mécaniques sur un cristal non-linéaire, nous sommes parvenus à modifier de façon significative ses propriétés d'accord de phase. / In this thesis, we study new concepts and laser architecture for the development of high power, diode-pumped solid-state lasers frequency converted in the ultraviolet range (UV). Ultraviolet lasers are increasingly used in many manufacturing process and spectroscopic applications. We first demonstrate a novel laser architecture emitting at 236,5 nm using a frequency converted, pulsed nanosecond laser oscillator emitting at 946 nm based on a Nd:YAG single-crystal fiber. We demonstrate state-of-the-art performances by studying the main laser limitations and by optimizing the two frequency conversion stages. Then, we study two new non-linear crystals for frequency conversion in the UV : Ca5(BO3)3F (CBF), a new non-hygroscopic crystal for third harmonic generation to 343 nm, and a well-known crystal BaB2O4 (BBO) grown by an unusual growth method, the Czochralski (CZ) growth. We demonstrate the first UV generation experiment with CBF, and show that BBO crystals grown by the CZ method yield better conversion efficiencies in high average power, fourth harmonic generation to 257 nm experiments. Finally, we propose and demonstrate a new concept for frequency conversion called mechanical phase-matching. We managed to change a non-linear crystal’s properties significantly by applying a strong mechanical compression force on its facets.
|
4 |
Fabrication and characterization of periodically poled KTB and RB-doped KTB for applications in the visible and UVWang, Shunhua January 2005 (has links)
This thesis deals with the fabrication and the characterization of periodically-poled crystals for use in lasers to generate visible and UV radiation by second-harmonic generation (SHG) through quasi-phasematching (QPM). Such lasers are of practical importance in many applications like high-density optical storage, biomedical instrumentation, colour printing, and for laser displays. The main goals of this work were: (1) to develop effective monitoring methods for poling of crystals from the KTiOPO4 (KTP) family, (2) to develop useful non-destructive domain characterization techniques, (3) to try to find alternative crystals to KTP for easier, periodic poling, (4) to investigate the physical mechanisms responsible for optical damage in KTP. The work shows that the in-situ SHG technique used together with electro-optic monitoring, makes it possible to obtain reliable, real-time information regarding the poling quality over the whole crystal aperture during the electric-field poling process. Using this combined monitoring method, both KTP and Rb-doped KTP (RKTP) crystals were successfully poled. By comparing these two crystals, we found that a low-doped KTP has a substantially reduced ionic conductivity and, thus, a high-quality periodic poling can be obtained without otherwise affecting the properties of the crystal. RKTP is a good alternative candidate to KTP for poling purpose. We have also shown that Atomic Force Microscopy (AFM) is an informative tool for investigating domain nucleation, growth, and merging. Furthermore, we have demonstrated a simple technique for 3D characterization of QPM samples. It utilizes a group-velocity mismatched, type-II SHG of femtosecond pulses for layer-by-layer monitoring of the effective nonlinearity along the propagation direction of the beam. The quality of these crystals was finally reflected in a number of SHG experiments with a variety of laser sources. High energies and high efficiencies were thus demonstrated using CW, mode-locked and Q-switched lasers. Gratings with pitches smaller than 3 µm, were demonstrated for first-order UV generation. Type-II QPM SHG was demonstrated as a technique for reducing the fabrication constraints. High intensity light in the visible and the UV leads to modification of the material properties and, eventually, to optical damage. In KTP and its isomorphs, the first sign of material change is an optically-induced absorption. We have used thermal-lens spectroscopy with a common-path interferometer for high-sensitivity measurements of green light-induced infrared absorption dynamics in single-domain and periodically-poled KTP (PPKTP). The saturated, green light-induced absorption has been shown to be consistently higher in periodically-poled crystals, and is attributed to the creation of stoichiometric and interstitial defects in the crystals during the poling process. Finally, irreversible bulk damage thresholds in PPKTP have been determined for pulsed frequency converters. As the characteristics of optical damage are closely related to the material quality, this investigation can provide useful information for crystal manufactures and will help to optimise the crystal growth conditions.
|
5 |
Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4Hellström, Jonas January 2001 (has links)
Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves. The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO4crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO4(KTP). The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d33, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field. The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode. <b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO4, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.
|
6 |
Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4Hellström, Jonas January 2001 (has links)
<p>Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves.</p><p>The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO<sub>4</sub>crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO<sub>4</sub>(KTP).</p><p>The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d<sub>33</sub>, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field.</p><p>The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode.</p><p><b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO<sub>4</sub>, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.</p>
|
7 |
Fabrication and characterization of periodically poled KTB and RB-doped KTB for applications in the visible and UVWang, Shunhua January 2005 (has links)
<p>This thesis deals with the fabrication and the characterization of periodically-poled crystals for use in lasers to generate visible and UV radiation by second-harmonic generation (SHG) through quasi-phasematching (QPM). Such lasers are of practical importance in many applications like high-density optical storage, biomedical instrumentation, colour printing, and for laser displays.</p><p>The main goals of this work were: (1) to develop effective monitoring methods for poling of crystals from the KTiOPO<sub>4</sub> (KTP) family, (2) to develop useful non-destructive domain characterization techniques, (3) to try to find alternative crystals to KTP for easier, periodic poling, (4) to investigate the physical mechanisms responsible for optical damage in KTP. The work shows that the in-situ SHG technique used together with electro-optic monitoring, makes it possible to obtain reliable, real-time information regarding the poling quality over the whole crystal aperture during the electric-field poling process. Using this combined monitoring method, both KTP and Rb-doped KTP (RKTP) crystals were successfully poled. By comparing these two crystals, we found that a low-doped KTP has a substantially reduced ionic conductivity and, thus, a high-quality periodic poling can be obtained without otherwise affecting the properties of the crystal. RKTP is a good alternative candidate to KTP for poling purpose. We have also shown that Atomic Force Microscopy (AFM) is an informative tool for investigating domain nucleation, growth, and merging. Furthermore, we have demonstrated a simple technique for 3D characterization of QPM samples. It utilizes a group-velocity mismatched, type-II SHG of femtosecond pulses for layer-by-layer monitoring of the effective nonlinearity along the propagation direction of the beam. The quality of these crystals was finally reflected in a number of SHG experiments with a variety of laser sources. High energies and high efficiencies were thus demonstrated using CW, mode-locked and Q-switched lasers. Gratings with pitches smaller than 3 µm, were demonstrated for first-order UV generation. Type-II QPM SHG was demonstrated as a technique for reducing the fabrication constraints.</p><p>High intensity light in the visible and the UV leads to modification of the material properties and, eventually, to optical damage. In KTP and its isomorphs, the first sign of material change is an optically-induced absorption. We have used thermal-lens spectroscopy with a common-path interferometer for high-sensitivity measurements of green light-induced infrared absorption dynamics in single-domain and periodically-poled KTP (PPKTP). The saturated, green light-induced absorption has been shown to be consistently higher in periodically-poled crystals, and is attributed to the creation of stoichiometric and interstitial defects in the crystals during the poling process. Finally, irreversible bulk damage thresholds in PPKTP have been determined for pulsed frequency converters. As the characteristics of optical damage are closely related to the material quality, this investigation can provide useful information for crystal manufactures and will help to optimise the crystal growth conditions.</p>
|
8 |
Development of ultra-broadband ultrafast infrared sources and applications to nonlinear vibrational spectroscopy of interfacesIsaienko, Oleksandr January 2011 (has links)
Interfaces play a crucial role in the exchange of energy and matter in various physical, chemical and biological systems. A particular interest has been to study interfaces between aqueous phases and various minerals because of their importance in understanding geochemical phenomena as well as for applications such as enhanced oil recovery. The nonlinear optical technique of vibrational sum-frequency generation (SFG) spectroscopy, introduced over 20 years ago, has become a powerful tool to investigate various surfaces, in particular, mineral-water interfaces. One of the challenges of the SFG spectroscopy of aqueous surfaces is the need to tune the central frequency of relatively narrowband IR lasers through the broad range of the OH-stretch frequencies of water molecules (3000 - 4000 cm-1). We have developed a novel ultrabroadband IR laser source that generates infrared pulses in the ~2800-6000 cm-1 range (lambda~3300-1800 nm) with bandwidths Delta(nu)>1000 cm-1, and bandwidths >2000 cm-1 in the near-IR range (lambda~1000-2000 nm). Pulse front tilt of signal pulse has been corrected allowing for compression of signal pulses down to 25 fsec. Such ultrabroadband IR pulses allow us to perform SFG spectroscopy of aqueous surfaces over the entire frequency range of water molecule spectrum (extending from ~2900 cm -1 to ~3800 cm -1) simultaneously, without tuning the laser ("in one shot"). We have used this novel ultrabroadband IR source to investigate the vibrational SFG spectra of silica/water interfaces. The high signal-to-noise ratio of our spectroscopic setup has allowed us to study low-intensity features that were not studied in detail, or recognized previously in the SFG-spectroscopy investigations, including: 1) non-hydrogen bonded OH vibrations at hydrophilic silica/water interfaces; 2) combination [stretch+bend] bands of water at the silica surface appearing at ~5000-5200 cm -1. 3) Overtones of water stretching modes at silica/water interfaces. The most important conclusions from these studies are outlined below. 1. Non-hydrogen bonded hydroxyls at silica/water interface. Typically SFG-studies of mineral/water interfaces (in particular, silica/water) have focused on the most pronounced features - peaks of H-bonded hydroxyls at ~3150 and ~3450 cm -1. We have been able to systematically observe and study a weaker peak at ~3670 - 3700 cm -1. This peak becomes more pronounced as the pH of aqueous phase decreases, as well as the ionic strength increases, indicating that the hydroxyls corresponding to this spectral feature are situated in a very close proximity to the surface. Isotopic dilution experiments indicate that the 3700 cm -1 feature is not due to asymmetric OH stretches as was suggested before. Based on our results, we suggest that this spectral feature corresponds to hydroxyls of water molecules at the silica surface that cannot hydrogen bond with silanol groups because of the lower density of silanols compared to H2O. We believe this to be the first surface-specific study of non-hydrogen bonded hydroxyls at silica, a surface widely accepted as hydrophilic. 2. SFG spectroscopy of [ν(OH)+δ(HOH)] combination bands of water at silica surface. We have extended SFG spectroscopy of the interfacial hydroxyls at mineral/water surfaces into the near-IR frequency range. The studies of overtones of interfacial OH(OD) groups will provide information on the anharmonicity of such species, and thus on the energy of dissociation. In addition, the positions of the overtone frequencies of the hydroxyls are more sensitive to interactions with the environment than the fundamental stretch frequencies. Our particular focus has been to study the stretch+bend combination band nu comb nu;(OH)+delta;(HOH) of liquid water which occurs in the near-IR spectral range at ~5000-5200 cm -1. It is typically much weaker in the FTIR absorption spectra than the fundamental transitions of the OH stretches or HOH bending, similar to overtones of these modes. We have performed, what we believe to be, the first surface-specific vibrational SFG spectroscopic measurements of combination bands of water molecules at silica surfaces. SFG spectroscopy of water combination band allows access to the water bending mode (delta~1600 cm -1), which still has not been observed in sum-frequency. / Chemistry
|
Page generated in 0.0586 seconds