• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-Phasematched nonlinear processes in KTiOPO4 isomorphs

Fragemann, Anna January 2003 (has links)
<p>This thesis explores the use of nonlinear crystals from theKTiOPO<sub>4</sub>(KTP) family with the aim to extend the possibleapplications for laser sources and to gain more knowledge aboutthe material’s benefits and limits. The work focussed onoptical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs), which employ second order nonlinearprocesses. Both devices transfer energy from a laser beam at aparticular wavelength to a different wavelength, which istuneable. In OPOs two new beams at different wavelengths aregenerated, whereas in OPAs an existing weak beam is amplified.The essential part of these devices, which enables theoccurrence of the energy conversion, is a nonlinear crystal. Inthis work the ferroelectric crystals KTP and RbTiOPO<sub>4</sub>(RTP) have been utilized.</p><p>By modifying the material’s structure,quasi-phasematching can be obtained, which is a crucialrequirement for achieving efficient energy conversion betweenthe incident and the generated waves. The fabrication ofquasi-phasematched crystals is dependent on the controlledreversion of the material’s spontaneous polarisation,which is accomplished by periodic electric field poling.</p><p>Nanosecond pulses of more than 200 kW were generated in the“eye-safe”region by employing a double pass OPA.Small signal gains exceeding 75 dB were obtained for anessentially diffraction limited beamwithout spectralbroadening of the seed. By subsequent signal coupling intofibres substantial broadening was accomplished. A systematicmeasurement series of several RTP crystals allowed us toaccurately determine the wavelength and temperature dispersionof the refractive index, which are two essential requirementsfor further employment of this material. The OPOs based on RTPwere widely tuneable by controlling the temperature. It wasalso concluded that RTP behaves similar to KTP in parametricdevices, thus being a material, which can sustain high powers,possesses large nonlinear coefficients and can operate in abroad wavelength region.Efficient Raman oscillation concurrent with parametricoscillation was observed and analysed in several KTP samples.This gave further insight into the processes taking placeinside the material when performing as a frequency converter,if the generated idler lies in the absorption band.This thesis also covers the investigation of afemtosecond optical parametric chirped pulse amplifier.Temporally stretched seed pulses were amplified to 85 µJ,resulting in a gain above 60 dB, and subsequent recompressionresulted in 270 fs pulses.</p><p><b>Keywords:</b>nonlinear optics, KTiOPO<sub>4</sub>, optical parametric oscillator, optical parametricamplifier, RbTiOPO<sub>4</sub>, quasi-phasematching, electric field poling,stimulated Raman scattering.</p>
2

Quasi-Phasematched nonlinear processes in KTiOPO4 isomorphs

Fragemann, Anna January 2003 (has links)
This thesis explores the use of nonlinear crystals from theKTiOPO4(KTP) family with the aim to extend the possibleapplications for laser sources and to gain more knowledge aboutthe material’s benefits and limits. The work focussed onoptical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs), which employ second order nonlinearprocesses. Both devices transfer energy from a laser beam at aparticular wavelength to a different wavelength, which istuneable. In OPOs two new beams at different wavelengths aregenerated, whereas in OPAs an existing weak beam is amplified.The essential part of these devices, which enables theoccurrence of the energy conversion, is a nonlinear crystal. Inthis work the ferroelectric crystals KTP and RbTiOPO4(RTP) have been utilized. By modifying the material’s structure,quasi-phasematching can be obtained, which is a crucialrequirement for achieving efficient energy conversion betweenthe incident and the generated waves. The fabrication ofquasi-phasematched crystals is dependent on the controlledreversion of the material’s spontaneous polarisation,which is accomplished by periodic electric field poling. Nanosecond pulses of more than 200 kW were generated in the“eye-safe”region by employing a double pass OPA.Small signal gains exceeding 75 dB were obtained for anessentially diffraction limited beamwithout spectralbroadening of the seed. By subsequent signal coupling intofibres substantial broadening was accomplished. A systematicmeasurement series of several RTP crystals allowed us toaccurately determine the wavelength and temperature dispersionof the refractive index, which are two essential requirementsfor further employment of this material. The OPOs based on RTPwere widely tuneable by controlling the temperature. It wasalso concluded that RTP behaves similar to KTP in parametricdevices, thus being a material, which can sustain high powers,possesses large nonlinear coefficients and can operate in abroad wavelength region.Efficient Raman oscillation concurrent with parametricoscillation was observed and analysed in several KTP samples.This gave further insight into the processes taking placeinside the material when performing as a frequency converter,if the generated idler lies in the absorption band.This thesis also covers the investigation of afemtosecond optical parametric chirped pulse amplifier.Temporally stretched seed pulses were amplified to 85 µJ,resulting in a gain above 60 dB, and subsequent recompressionresulted in 270 fs pulses. <b>Keywords:</b>nonlinear optics, KTiOPO4, optical parametric oscillator, optical parametricamplifier, RbTiOPO4, quasi-phasematching, electric field poling,stimulated Raman scattering. / NR 20140805
3

Advanced nano- and microdomain engineering of Rb-doped KTiOPO4 for nonlinear optical applications

Liljestrand, Charlotte January 2017 (has links)
Fine-pitch ferroelectric domain gratings are extensively used for generation of light in the visible and near-infrared spectral regions through quasi-phase matched (QPM) frequency conversion. Sub-μm QPM devices enables demonstration of nonlinear optics with counterpropagating waves, a field of nonlinear optics which remains sparsely explored due to the difficulty of fabricatinghigh quality gratings. In recent years, bulk Rb-doped KTiOPO4 (RKTP) has emerged as a highly promising nonlinear materials for fabrication of fine-pitch QPM devices through periodic electric-field poling. RKTP possesses large optical nonlinearity and high resistance to optical damage, while demonstrating improved material homogeneity and lower ionic conductivity than its isomorphs, which are important features for poling. Although fine-pitch QPM gratings, as well as large aperture QPM devices, have been demonstrated, fabrication of sub-μm high quality QPM devices remains a challenge. The primary aim of this research was to develop a reliable method to fabricate high-quality sub-μm periodically poled RKTP crystals (PPRKTP) and exploit them in novel optical applications. For this purpose, a novel poling method was developed. It was based on periodic modulation of the coercive field through ion exchange, where K+ ions are exchanged with Rb+ in the crystal, to modulate the coercive field and the ionic conductivity. This enables periodic poling of higher quality and with shorter period than ever before. High quality PPRKTP with a period of 755 nm were fabricated and used to demonstrate the first cascaded mirrorless optical parametric oscillator (MOPO), as well as the first MOPO pumped by a Q-switched laser. PPRKTP samples for blue light generation were fabricated, and second harmonic generation (SHG) was investigated with a high power 946 nm fiber laser. Up to 2 W of blue power was demonstrated for bulk samples, where the output power was limited by absorption of the SHG, leading to thermal dephasing of the devices. Laser-written waveguides were fabricated in PPRKTP for the first time, and a record high SHG power of 76 mW was obtained. Finally, the high-temperature stability of ferroelectric domain gratings was investigated. This is of utmost importance when a PPRKTP crystal is used as a seed for crystal growth. It was found that for charged domains walls, the domain-wall motion was highly anisotropic with rapid movement in y-direction while only small movements were observed in the x-direction of the crystal. / Ickelinjära ferroelektriska kristaller med artificiella domängitter med perioder av några mikrometer används idag för generering av ljus i de synliga och nära-infraröda våglängdsområdena, genom kvasifasmatchad (QPM) frekvenskonvertering. Med sub-μm QPM domängitter kan man åstadkomma ickelinjära optiska effekter med motpropagerande parametriska ljusvågor. Detta är ett område av den ickelinjära optiken som fortfarande är tämligen outforskat på grund av svårigheten med att tillverka högkvalitativa domängitter.  Under de senaste åren har Rb-dopat KTiOPO4 (RKTP) blivit ett mycket lovande ickelinjärt material för tillverkning av QPM-gitter med mycket korta perioder genom periodisk elektrisk fält polning. RKTP kristallen har en hög optisk ickelinejäritet och den tål höga optiska intensiteter, samtidigt som materialet har bättre materialhomogenitet och lägre jonledningsförmåga än vad dess isomorfa kristaller har. De två senare egenskaperna har visat sig viktiga för att få en lyckad polning. Fastän QPM-gitter med kort periodicitet, liksom QPM-gitter med stor apertur, har demonstrerats, är tillverkningen av högkvalitativa QPM-kristaller med sub-µm perioder fortfarande en utmaning. Det primära syftet med denna avhandling var att utveckla en pålitlig metod för att tillverka högkvalitativa sub-μm periodiskt polade RKTP kristaller (PPRKTP) och utnyttja dem i nya optiska tillämpningar. I detta syfte utvecklades en ny polningsmetod. Den baseras på periodiskt jonutbyte, där K+ joner byts mot Rb+ i kristallen, vilket resulterar i en samtidig modulation av materialets koerciva fält och jonledningsförmåga. Detta möjliggör i sin tur periodisk polning av högre kvalitet och med kortare perioder än någonsin tidigare har uppnåtts. Högkvalitativa PPRKTP kristaller med en period på 755 nm tillverkades och användes för att demonstrera den första kaskaderade spegelfria optiska parametriska oscillatorn (MOPO), liksom den första MOPO processen pumpad av en Q-switchad laser. Vidare utvecklades PPRKTP-kristaller för generering av blått ljus via frekvensdubbling. Dessa utvärderades med hjälp av en högeffekts-fiberlaser vid 946 nm. Upp till 2 W av blått ljus erhölls för bulkkristallerna. Uteffekten begränsades av absorption av det blåa frekvensdubblade ljuset, vilket ledde till urfasning i QPM-gittret p.g.a. termiska effekter. Laserskrivna vågledare tillverkades sedan i PPRKTP för första gången, och en rekordhög effekt på 76 mW erhölls via frekvensdubbling. Slutligen undersöktes stabiliteten hos de periodiskt polade domängitterna vid höga temperaturer. Det är viktigt att domängittrena är stabila när PPRKTP kristallerna används som ympämne för kristalltillväxt. Det visade sig att instabila domänväggar flyttade sig mycket anisotropt, med en snabb rörelse i kristallens y-riktning och en långsam rörelse i kristallens x-riktning. / <p>QC 20170519</p>
4

Nonlinear response in engineered optical materials

Strömqvist, Gustav January 2012 (has links)
Material and structure engineering are increasingly employed in active optical media,in this context defined as media capable of providing laser or/and optical parametric gain. For laser materials, the main aim of the engineering is to tailor the absorption and emission cross sections in order to optimise the laser performance. At the same time, the engineering also results in a collateral modification of the material’s nonlinear response. In the first part of this work, the nonlinear index of refraction is characterised for two crystallographic forms of laser-ion doped and undoped double-tungstate crystals. These laser crystals have broad gain bandwidths, in particular when doped with Yb3+. As shown in this work, the crystals also have large Kerr nonlinearities, where the values vary significantly for different chemical compositions of the crystals. The combination of a broad gain bandwidthand a high Kerr nonlinearity makes the laser-ion doped double tungstates excellent candidates to employ for the generation of ultrashort laser pulses by Kerr-lens modelocking. The second part of the work relates to the applications of engineered second-order nonlinear media, which here in particular are periodically-poled KTiOPO4 crystals. Periodic structure engineering of second-order nonlinear crystals on a submicrometre scale opens up for the realisation of novel nonlinear devices. By the use of quasi-phase matching in these structures, it is possible to efficiently downconvert a pump wave into two counterpropagating parametric waves, which leads to a device called a mirrorless optical parametric oscillator. The nonlinear response in these engineered submicrometre structures is such that the parametric wave that propagates in the opposite direction of the pump automatically has a narrow bandwidth, whereas the parametric wave that propagates with the pump essentially is a frequency-shifted replica of the pump wave. The unusual spectral properties andthe tunabilities of mirrorless optical parametric oscillators are investigated. / QC 20120330
5

Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4

Hellström, Jonas January 2001 (has links)
Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves. The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO4crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO4(KTP). The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d33, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field. The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode. <b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO4, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.
6

Domain engineering in KTiOPO4

Canalias, Carlota January 2005 (has links)
Ferroelectric crystals are commonly used in nonlinear optics for frequency conversion of laser radiation. The quasi-phase matching (QPM) approach uses a periodically modulated nonlinearity that can be achieved by periodically inverting domains in ferroelectric crystals and allows versatile and efficient frequency conversion in the whole transparency region of the material. KTiOPO4 (KTP) is one of the most attractive ferroelectric non-linear optical material for periodic domain-inversion engineering due to its excellent non-linearity, high resistance for photorefractive damage, and its relatively low coercive field. A periodic structure of reversed domains can be created in the crystal by lithographic patterning with subsequent electric field poling. The performance of the periodically poled KTP crystals (PPKTP) as frequency converters rely directly upon the poling quality. Therefore, characterization methods that lead to a deeper understanding of the polarization switching process are of utmost importance. In this work, several techniques have been used and developed to study domain structure in KTP, both in-situ and ex-situ. The results obtained have been utilized to characterize different aspects of the polarization switching processes in KTP, both for patterned and unpatterned samples. It has also been demonstrated that it is possible to fabricate sub-micrometer (sub-μm) PPKTP for novel optical devices. Lithographic processes based on e-beam lithography and deep UV-laser lithography have been developed and proven useful to pattern sub- μm pitches, where the later has been the most convenient method. A poling method based on a periodical modulation of the K-stoichiometry has been developed, and it has resulted in a sub-μm domain grating with a period of 720 nm for a 1 mm thick KTP crystal. To the best of our knowledge, this is the largest domain aspect-ratio achieved for a bulk ferroelectric crystal. The sub-micrometer PPKTP samples have been used for demonstration of 6:th and 7:th QPM order backward second-harmonic generation with continuous wave laser excitation, as well as a demonstration of narrow wavelength electrically-adjustable Bragg reflectivity. / QC 20100930
7

Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4

Hellström, Jonas January 2001 (has links)
<p>Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves.</p><p>The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO<sub>4</sub>crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO<sub>4</sub>(KTP).</p><p>The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d<sub>33</sub>, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field.</p><p>The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode.</p><p><b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO<sub>4</sub>, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.</p>
8

Properties of Volume Bragg Gratings and Nonlinear Crystals for Laser Engineering

Tjörnhammar, Staffan January 2015 (has links)
This thesis focuses on two topics: thermal limitations of volume Bragg gratings (VBGs) employed as laser-cavity mirrors and formation of color centers in KTiOPO4 and its isomorphs. To explore the mechanisms of the thermal limitations of VBGs in high power lasers, I designed and constructed a diode-pumped, solid‑state laser with a VBG as cavity mirror that had a significantly higher absorption than what is typical. Thereby I could study the limiting thermal effects by using only moderate intra-cavity power. Additionally, I designed a computer model to numerically investigate the thermal effects in VBGs. Both the experiments and the simulations showed that the laser became successively more unstable when the power was increased. Absorption of the reflected laser beam causes broadening of the grating spectrum accompanied by decreasing diffraction efficiency. The reduced reflectivity leads to a leakage of the radiation through the grating. Moreover, the simulations showed that this increased instability was due to a reshaping of the intensity distribution profile inside the grating, which, in turn, leads to a sharp reduction of the diffraction efficiency. High-intensity visible radiation induces color centers in KTiOPO4, which can lead to severe decrease in the performance of the crystal and can cause catastrophic breakdown. The formation of color centers was investigated by measuring picosecond, blue-light induced infrared absorption (BLIIRA) in periodically-poled KTiOPO4, Rb:KTiOPO4, RbTiOPO4, KTiOAsO4 and RbTiOAsO4 through thermal lens spectroscopy using a common-path interferometer. This setup is capable of measuring absorption as low as 10-5 cm-1. The dependence of the BLIIRA signal on blue light average power and intensity as well as on the crystal temperature was studied. The results show the presence of at least two different types of color centers. A higher level of remnant absorption was observed in the phosphates compared to that of the arsenates. The largest portion of the induced absorption is attributed to photo-generated electrons and holes being self-trapped in the proximity to the Ti4+ and O2- ions, respectively, forming polaron color centers. Stabilization of these centers is aided by the presence of mobile alkali metal vacancies in the crystal. / Denna avhandling fokuserar på både volymbraggitters (VBGs) termiska begränsningar, i tillämpning som speglar i laserkaviteter, och på bildandet av färgcentra i KTiOPO4 och isomorfa kristaller. För att undersöka de termiska effekterna i VBGer som medför begränsningar på högeffektlasrar utfördes både experiment och simuleringar. För experimenten konstruerades en diod-pumpad Yb:KYW laser med ett VBG som har betydligt högre absorption än vad som är typiskt. Därmed kunde de termiska effekterna studeras vid måttliga intrakavitetseffekter. Simuleringarna bestod av två delmodeller; gitterstrukturen modelerades med överföringsmatriser och värmeflödet med en tredimensionell modell baserad på finita elementmetoden. Både experimenten och simuleringarna visade att en laser blir successivt mer instabil när den optiska effekten ökar. Absorptionen av laserstrålen i VBGt förändrade dess spektrala egenskaper, vilket i sin tur påverkade laserns stabilitet och prestanda. De huvudsakliga effekterna var en breddning av gittrets spektrum med en minskad reflektans. Simuleringarna visade även att den ökade instabiliteten berodde på en förändring av strålningens intensitetsfördelning inuti gittret, vilket accelererade reduktionen av gittrets reflekterande förmåga. I termer av den effekt som faller in mot gittret, har lasern en tydlig övre effektgräns. När den gränsen har uppnåtts leder vidare ökning av pumpeffekten i huvudsak till ökat läckage genom volymbraggittret, i stället för till ökad uteffekt hos laserstrålen. Kortvågigt synlig ljus av hög intensitet inducerar färgcentra i KTiOPO4, vilket kan leda till kraftigt reducerad transparens och kan orsaka permanent skada i kristallen. För att undersöka skapandet av dessa färgcentra mättes den termiska lins som uppstår vid blå-ljus-inducerad infraröd absorption (Eng: blue-light induced infrared absorption = BLIIRA) inducerad av blåa laserpulser vid en våglängd av 398 nm och vid pulslängder i storlek av pikosekunder i periodiskt‑polad KTiOPO4, Rb:KTiOPO4, RbTiOPO4, KTiOAsO4 och RbTiOAsO4. Den termiska linsen mättes med en metod kallad gemensam-vägsträcka-interferometer (Eng: common-path interferometer), en metod känslig nog för att mäta absorption så låg som 10-5 cm-1. Dessutom undersöktes hur nivån av BLIIRA beror på medeleffekten och intensiteten hos den blåa laserstrålen samt på kristalltemperaturen. Resultaten visar att det bildas minst två typer av färgcentra med olika livslängder. Vidare observerades en högre grad av långsamt avklingande absorption i fosfaterna jämfört med arsenaterna. Den största delen av den inducerade absorptionen tillskrivs fotogenererade elektroner och hål som ”självfångas” i närheten av Ti4+ respektive O2- joner, och bildar färgcentra av polaron karaktär. Stabilisering av dessa centra underlättas av lättrörliga alkalivakanser i kristallerna. / <p>QC 20150922</p>
9

Characterization of domain switching and optical damage properties in ferroelectrics

Hirohashi, Junji January 2006 (has links)
Nonlinear optical frequency conversion is one of the most important key techniques in order to obtain lasers with wavelengths targeted for specific applications. In order to realize efficient and tailored lasers, the quasi-phase-matching (QPM) approach using periodically-poled ferroelectric crystals is getting increasingly important. Also understanding of damage mechanisms in nonlinear materials is necessary to be able to design reliable and well working lasers. This is especially true for high power application lasers, which is a rapidly growing field, where the damage problem normally is the ultimate limiting factor. In this thesis work, several promising novel ferroelectric materials have been investigated for nonlinear optical applications and the emphasis has been put on QPM devices consisting of periodically-poled structures. The materials were selected from three different types of ferroelectric materials: 1) MgO-doped stoichiometric LiNbO3 (MgO:SLN) and LiTaO3 (MgO:SLT), and non-doped stoichiometric LiTaO3 (SLT), 2) KTiOPO4 (KTP) and its isomorphs RbTiOPO4 (RTP), and 3) KNbO3 (KN). The focus in our investigations have been put on the spontaneous polarization switching phenomena, optimization of the periodic poling conditions, and the photochromic optical damage properties which were characterized by the help of blue light-induced infrared absorption (BLIIRA) measurements. With electrical studies of the spontaneous polarization switching, we were able to determine quantitatively, and compare, the coercive field values of different materials by applying triangularly shaped electric fields. We found that the values of the coercive fields depended on the increase rate of the applied electric field. The coercive field of KN was the lowest (less than 0.5 kV/mm) followed by the ones of KTP, SLT, and MgO:SLT (1.5 to 2.5 kV/mm). MgO:SLN, and RTP had relatively high coercive fields, approximately 5.0 to 6.0 kV/mm, respectively. Based on the domain switching characteristics we found, we successfully fabricated periodically-poled devices in all of the investigated materials with 30 μm periodicities and sample thickness of 1 mm. Blue light-induced infrared absorption (BLIIRA) has been characterized for unpoled bulk and periodically-poled samples using a high-sensitivity, thermal-lens spectroscopy technique. SLT showed a large photorefraction effect and the BLIIRA signal could not be properly measured because of the large distortion of the probe beam. The rise and relaxation time of BLIIRA, after switching the blue light on and off was in a time span of 10 to 30 sec except for KTP and its isomorphs, which needed minutes to hours in order to saturate at a fixed value. KN and MgO:SLN showed the lowest susceptibility to the induced absorption. Periodic poling slightly increased the susceptibility of KTP, MgO:SLT, and KN. Relatively high thresholds were observed in MgO:SLT and KN. By increasing the peak-power intensity of the blue light, the induced absorption for MgO:SLN, KTP and KN saturated at a constant value while that of MgO:SLT increase in a constant fashion. This trend is critical issue for the device reliability at high-power applications. / QC 20100830
10

Concepts for compact solid-state lasers in the visible and UV

Johansson, Sandra January 2006 (has links)
In many fields, scientific or industrial, optical devices that can be tailored in terms of spectral qualities and output power depending on the application in question are attractive. Nonlinear optics in combination with powerful laser sources provide a tool to achieve essentially any wavelength in the electromagnetic spectrum, and the advancement of material technology during the last decade has opened up new possibilities in terms of realising such devices. The main part of the thesis deals with the development of compact functional lasers based on nonlinear interaction utilising diode-pumped solid-state lasers and also laser diodes. Efficient frequency conversion into the visible and ultraviolet part of the electromagnetic spectrum has been achieved, using both Nd:YAG and Nd:YVO4 lasers as well as a semiconductor laser as the fundamental light sources. For the nonlinear conversion, periodically poled potassium titanyl phosphate (PPKTP), bismuth triborate (BiBO) and beta barium borate (BBO) have been employed. In the search for compact and reliable light sources emitting in the visible part of the spectrum, two different approaches have been explored. First, a scheme based on sum-frequency mixing of a diode-pumped solid-state laser and a laser diode of good beam quality. The idea of this approach is to take advantage of the individual strength of each device, which would be the flexibility in terms of wavelength for the laser diode and the possibility to reach high output power from the diode-pumped solid-state laser. Second, by mixing two different solid-state lasers substantially more output power could be generated albeit at a cost of less freedom in the choice of spectral output. As these two light sources had their central wavelength at 492 nm and 593 nm, respectively, they are highly interesting in biomedical applications since they correspond to the peak absorption of several popular fluorophores. In applications such as lithography, material synthesis and fibre grating fabrication, laser sources emitting in the deep-UV spectrum are desired. An all solid-state 236 nm laser source with 20 mW of average power have been designed and constructed, by frequency-quadrupling a passively Q-switched Nd:YAG laser lasing on a quasi-three level transition. Also, a novel concept for miniaturising solid-state lasers has been examined. Using a heat-conductive polymer carrier, a generic approach especially suited for mass-production of functional laser devices is presented. Finally, it has been proven that GRIN lenses can provide a very compact beam shaping solution to standard laser diodes based on the beam twisting approach. This method offers several advantages such as compactness of the beam shaping system, automated assembly in solid-state laser manufacturing due to the shape of these lenses and polarisation preservation of the laser diode output. / QC 20100903

Page generated in 0.0264 seconds