• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quasi-Phasematched nonlinear processes in KTiOPO4 isomorphs

Fragemann, Anna January 2003 (has links)
<p>This thesis explores the use of nonlinear crystals from theKTiOPO<sub>4</sub>(KTP) family with the aim to extend the possibleapplications for laser sources and to gain more knowledge aboutthe material’s benefits and limits. The work focussed onoptical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs), which employ second order nonlinearprocesses. Both devices transfer energy from a laser beam at aparticular wavelength to a different wavelength, which istuneable. In OPOs two new beams at different wavelengths aregenerated, whereas in OPAs an existing weak beam is amplified.The essential part of these devices, which enables theoccurrence of the energy conversion, is a nonlinear crystal. Inthis work the ferroelectric crystals KTP and RbTiOPO<sub>4</sub>(RTP) have been utilized.</p><p>By modifying the material’s structure,quasi-phasematching can be obtained, which is a crucialrequirement for achieving efficient energy conversion betweenthe incident and the generated waves. The fabrication ofquasi-phasematched crystals is dependent on the controlledreversion of the material’s spontaneous polarisation,which is accomplished by periodic electric field poling.</p><p>Nanosecond pulses of more than 200 kW were generated in the“eye-safe”region by employing a double pass OPA.Small signal gains exceeding 75 dB were obtained for anessentially diffraction limited beamwithout spectralbroadening of the seed. By subsequent signal coupling intofibres substantial broadening was accomplished. A systematicmeasurement series of several RTP crystals allowed us toaccurately determine the wavelength and temperature dispersionof the refractive index, which are two essential requirementsfor further employment of this material. The OPOs based on RTPwere widely tuneable by controlling the temperature. It wasalso concluded that RTP behaves similar to KTP in parametricdevices, thus being a material, which can sustain high powers,possesses large nonlinear coefficients and can operate in abroad wavelength region.Efficient Raman oscillation concurrent with parametricoscillation was observed and analysed in several KTP samples.This gave further insight into the processes taking placeinside the material when performing as a frequency converter,if the generated idler lies in the absorption band.This thesis also covers the investigation of afemtosecond optical parametric chirped pulse amplifier.Temporally stretched seed pulses were amplified to 85 µJ,resulting in a gain above 60 dB, and subsequent recompressionresulted in 270 fs pulses.</p><p><b>Keywords:</b>nonlinear optics, KTiOPO<sub>4</sub>, optical parametric oscillator, optical parametricamplifier, RbTiOPO<sub>4</sub>, quasi-phasematching, electric field poling,stimulated Raman scattering.</p>
2

Quasi-Phasematched nonlinear processes in KTiOPO4 isomorphs

Fragemann, Anna January 2003 (has links)
This thesis explores the use of nonlinear crystals from theKTiOPO4(KTP) family with the aim to extend the possibleapplications for laser sources and to gain more knowledge aboutthe material’s benefits and limits. The work focussed onoptical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs), which employ second order nonlinearprocesses. Both devices transfer energy from a laser beam at aparticular wavelength to a different wavelength, which istuneable. In OPOs two new beams at different wavelengths aregenerated, whereas in OPAs an existing weak beam is amplified.The essential part of these devices, which enables theoccurrence of the energy conversion, is a nonlinear crystal. Inthis work the ferroelectric crystals KTP and RbTiOPO4(RTP) have been utilized. By modifying the material’s structure,quasi-phasematching can be obtained, which is a crucialrequirement for achieving efficient energy conversion betweenthe incident and the generated waves. The fabrication ofquasi-phasematched crystals is dependent on the controlledreversion of the material’s spontaneous polarisation,which is accomplished by periodic electric field poling. Nanosecond pulses of more than 200 kW were generated in the“eye-safe”region by employing a double pass OPA.Small signal gains exceeding 75 dB were obtained for anessentially diffraction limited beamwithout spectralbroadening of the seed. By subsequent signal coupling intofibres substantial broadening was accomplished. A systematicmeasurement series of several RTP crystals allowed us toaccurately determine the wavelength and temperature dispersionof the refractive index, which are two essential requirementsfor further employment of this material. The OPOs based on RTPwere widely tuneable by controlling the temperature. It wasalso concluded that RTP behaves similar to KTP in parametricdevices, thus being a material, which can sustain high powers,possesses large nonlinear coefficients and can operate in abroad wavelength region.Efficient Raman oscillation concurrent with parametricoscillation was observed and analysed in several KTP samples.This gave further insight into the processes taking placeinside the material when performing as a frequency converter,if the generated idler lies in the absorption band.This thesis also covers the investigation of afemtosecond optical parametric chirped pulse amplifier.Temporally stretched seed pulses were amplified to 85 µJ,resulting in a gain above 60 dB, and subsequent recompressionresulted in 270 fs pulses. <b>Keywords:</b>nonlinear optics, KTiOPO4, optical parametric oscillator, optical parametricamplifier, RbTiOPO4, quasi-phasematching, electric field poling,stimulated Raman scattering. / NR 20140805
3

Optical Parametric Amplification: from Nonlinear Interferometry to Black Holes

Florez Gutierrez, Jefferson 29 March 2022 (has links)
We explore the optical parametric amplifier, an optical device where a pump field creates a pair of lower-frequency fields: signal and idler. The pump field is usually treated classically, but this thesis focuses on scenarios where the pump must be treated quantum mechanically. One of these scenarios is the growing field of nonlinear interferometry, where the fundamental sensitivity of a probed relative phase can beat the classical bounds and reach the maximum limit allowed by quantum mechanics, the Heisenberg limit. Indeed, we show that a fully quantum nonlinear interferometer displays a Heisenberg scaling in terms of the mean number of input pump photons. This result goes beyond the well-accepted Heisenberg scaling with respect to the down-converted photons inside the interferometer, which predicts unphysical phase sensitivities starting at a particular input pump energy. Our theoretical findings are particularly useful when designing a nonlinear interferometer with bright pump fields or optimized optical parametric amplifiers for quantum metrology and quantum imaging applications. The quantum nature of the pump field may also play a central role concerning other physical phenomena, like Hawking radiation in the context of black holes. As suggested by several authors, both the optical parametric amplifier and Hawking radiation comprise the creation of fundamental particle pairs. Thus, if the optical parametric amplifier is fully treated quantum mechanically, we may get insight into an open problem in modern physics, namely the black hole information paradox. According to this paradox, the information stored in a black hole can be destroyed once the black hole has evaporated by emitting Hawking radiation, contradicting quantum mechanics. Despite the experimental efforts to build systems that reproduce event horizons and gravitational effects in the laboratory, the evaporation of black holes due to the emission of Hawking radiation remains a challenging task. In this thesis, we experimentally investigate the impact of an evolving pump field in an optical parametric amplifier by optimizing a parametric down-conversion process. We measure the pump and signal photon number properties, finding that the pump field gets chaotic and the signal coherent when the pump displays some sizeable depletion. We arrive at similar conclusions about the pump field from its measured Wigner function. Our experiment is the first step towards a successful experiment that could suggest that information in the black hole is not destroyed but encoded in the emitted Hawking radiation starting at some point in the black hole evolution. We finally discuss further experimental improvements to investigate the parallel between the optical parametric amplifier and Hawking radiation.
4

Generation and Detection of Coherent Pulse Trains in Periodically Poled Lithium Niobate Through Optical Parametric Amplification

Voratovic, Dayen Chad January 2011 (has links)
No description available.
5

An Ultrafast, Mid-Wave Infrared Source for Driving High-Order Harmonics Beyond the Water Window

Marra, Zachary A 01 January 2024 (has links) (PDF)
This dissertation details the development of the world’s first cryogenically cooled Fe:ZnSe-based chirped pulse amplifier, a mid-wave infrared source for strong-field physics experimentation. The long upper-state lifetime provided by cryogenically cooling the Fe:ZnSe gain medium allows free-running, diode-pumped Er:YAG lasers to be used as pump lasers. The amplifier is seeded by a novel two-stage optical parametric amplifier pumped at 1 μm, which is potentially carrier-envelope phase-stable. The system is capable of producing 247-fs pulses at 333 Hz and 4.6 mJ with a center wavelength of 4.07 μm, although exact characteristics vary for different repetition rates and arrangements. The spectral bandwidth avoids strong atmospheric CO2 absorption centered around 4.3 μm, allowing operation in ambient air with good beam quality. The laser is simple, stable, reliable, and boasts a high repetition rate and average power compared to other systems. By focusing the 18-GW beam in air, harmonics up to the ninth order were observed indicating its potential for use in strong-field experimentation. Few-cycle pulses were generated by passing the beam, at a repetition rate of 400 Hz, through a large-diameter gas-filled hollow-core fiber followed by dispersion compensating bulk CaF2. A krypton-filled fiber at 370 kPa yielded 1.14-mJ, 42-fs pulses centered at 4.07-μm, while an oxygen-filled fiber at 310 kPa delivered 0.78-mJ, 39-fs pulses spanning 3 to 5.5 μm. This work is a step toward a high repetition rate mid-wave infrared driver of isolated attosecond, keV-level, X-ray pulses. Fe:ZnSe is a unique gain medium with potential to become a disruptive technology across a variety of fields, especially in strong-field science, in which many physical phenomena are enhanced at longer wavelengths.
6

Development of a non-collinearly phase matched optical parametric amplifier and application in pump-probe spectroscopy

Rohwer, Egmont J. 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2011. / Please refer to full text to view abstract.
7

Spectral Management in Quasi-Phase-Matched Parametric Devices

Tiihonen, Mikael January 2006 (has links)
Nonlinear optical interaction in quasi-phase-matched structures opens up unique possibilities to build compact and efficient parametric devices such as optical parametric oscillators, generators, and amplifiers with tailored spectral properties. The focus of this thesis is on novel parametric interactions with periodically-poled KTiOPO4 (PPKTP) as the parametric gain medium. Optical parametric oscillators (OPOs) are attractive light sources for many applications, particularly in spectroscopy, and plays a central role in this thesis. Special attention is put on simple, yet powerful, spectral-manipulation and bandwidth-narrowing techniques for OPOs. The overall knowledge gained from these studies has been used for device construction of several tunable ultraviolet sources for biological sensing. In the case of bandwidth narrowing, the observation of decreasing spectral bandwidth in a noncollinear, idler-resonant OPO, as compared with a signal-resonant one, has been found to be due to the interplay between the material properties and the angular dispersion of PPKTP. To further reduce the bandwidth, we have shown that it is very beneficial to replace the output mirror in an OPO with a bulk Bragg grating. In fact, even close to degeneracy, where the bandwidth is typically wide, this approach is able to decrease the bandwidth drastically. Moreover, different OPO cavity designs have been examined in order to spectrally manipulate the resonant waves. By deploying a grating in a ring OPO cavity, it becomes possible to access the resonant wave and spectrally manipulated it in a zero-dispersion arrangement; the filtered wave is subsequently sent back into its own cavity as a seed signal, in a self-seeding arrangement. This particular cavity design decreases the bandwidth close to ~ 1000 times as compare to the free-running mode. An interesting phenomenon arises when two mutually coherent laser beams are used to pump a linear OPO cavity. When the pump beams intersect within the PPKTP crystal, an interference grating is formed and acts as a catalyst for the generation of new spectral sidebands through multiple cascaded four-wave mixing, in the pump, the idler and the signal directions. The spacing of these sidebands is determined geometrically by the incident pump angle, while the signals are continuously tunable over the c-band telecom window (λ ~ 1.5 μm) by rotating the cavity. Ultrabroad bandwidths have been generated in an optical parametric generator (OPG) pumped by an amplified picosecond Ti:sapphire laser. In the collinear direction the output spectrum extends over three octaves in the mid-infrared region. This enormously broad spectrum is also Fourier-filtered and subsequently used for narrowband seeding of an optical parametric amplifier (OPA). Finally, the spectral range between 285 nm and 340 nm is of importance for detection of biological substances through fluorescence spectroscopy. With this spectral region in mind a practical way to generate a tunable parametric device in the ultraviolet region is presented in the thesis. The developed ultraviolet laser is used for studies of the characteristics of biological particles. The ultraviolet source and the results from these studies, will be utilized in an integrated detection system, a so called early-warning system. / QC 20100923
8

Ultrafast Mid-Infrared Laser-Solid Interactions

Werner, Kevin Thomas 11 July 2019 (has links)
No description available.
9

Nonlinear systems for frequency conversion from IR to RF

Dolasinski, Brian David January 2014 (has links)
No description available.
10

Ultrafast Emission Spectroscopy and Nonlinear Laser Diagnostics for Nanosecond Pulsed Plasmas

Karna S Patel (9380432) 24 April 2024 (has links)
<p dir="ltr">In recent years, nanosecond repetitively pulsed (NRP) plasma discharges have garnered significant interest due to their rapid generation of reactive excited-state species, reactive radicals, and localized heat release within nanosecond (ns) timescale. To effectively harness these plasmas for altering system-level thermal and chemical behavior, a thorough understanding of their governing physics is crucial. This knowledge enables the development of predictive plasma kinetic models for tailoring NRP plasmas to specific applications. However, achieving this requires high-fidelity experimental data to validate models and deepen our understanding of fundamental plasma physics. Advancing experimental spectroscopy and laser diagnostics methods is essential for probing such temporally highly dynamic and optically complex nonequilibrium environments. This includes developing novel <i>test platforms</i>, conducting <i>fundamental research</i> to address existing knowledge gaps, and constructing custom <i>ultrafast laser architectures</i> for probing plasma properties. </p><p dir="ltr">The pioneering development of Streak-based <i>test platform</i> in the diagnostics field of nanosecond pulsed plasmas and its successful application towards inferring the underlying ultrafast spatio-temporal evolution of nanosecond pulsed plasma discharges with an unprecedented time-resolution as short as ~25 ps is presented for the first time. Spectrally filtered, 1D line-imaging of nanosecond pulsed plasma discharges in a single-shot, jitter-free, continuously sweeping manner is obtained, and differences in discharge dynamics of air and N2 plasma environments are studied. Successive <i>test platform</i> advancement includes spectrally resolved Streak-spectroscopy measurements of thermal regime-transition evolution from early-nonequilibrium to local-thermal-equilibrium (LTE) to attain time-resolved quantitative insights into N2(C) state rotational/vibrational nonequilibrium temperatures, electron temperature/density, and spectral lifetime dynamics. </p><p dir="ltr">Ultrafast laser-based progression includes detailed <i>fundamental</i> investigation of higher-order optical nonlinearity perturbations of fs-EFISH by considering of – self-phase modulation induced spectral characteristic of fs-EFISH signal, calibration mapping during-below-and-beyond optical breakdown regime, optical Kerr effect consequences, impact of femtosecond (fs) laser seeding on the noninvasiveness of fs-EFISH, and spectral emission characteristics of fs laser filaments. To infer N2(X) state nonequilibrium of NRP pulsed plasmas, two hybrid fs/ps ro-vibrational coherent anti-Stokes Raman scattering (CARS) <i>ultrafast laser architectures</i> are developed. First architecture, single-laser-solution, reduces system’s energy budget by ~3 mJ/pulse for generating narrowband (~21 ps), high-energy (~420 μJ/pulse), 532 nm probe pulses through incorporation of custom built visible fs optical parametric amplifier (OPA) coupled with an Nd:YAG power amplifier module. The second architecture, two-laser-solution, improves system’s robustness through the development of a 1 kHz, 532 nm, high-energy (~600 μJ/pulse), low-jitter (<1 ps), narrowband (~27 ps), master-oscillator-power-amplification (MOPA) based picosecond probe pulse laser time-synchronized with fs master-oscillator. Single-shot, hybrid fs/ps narrowband ro-vibrational CARS demonstration in a combusting flame up to temperatures of ~2400 K is demonstrated. Experimental ro-vibrational CARS investigation includes polarization based nonresonant background suppression and demonstration of preferential Raman coherence excitation shift, a temperature sensitivity enhancing strategy for vibrationally hot mediums like nanosecond pulsed plasmas. Lastly, an ultrafast pulse-friendly optically accessible vacuum cell is designed and fabricated for controlled experiments of NRP fs/ps CARS. Special care is taken to prevent self-focusing and spectral-temporal chirp of fs CARS beams while maintaining Gaussian focusing beam caustic.</p>

Page generated in 0.0979 seconds