• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photodiodes à avalanche GaInAs/Al(Ga)InAs pour la détection à 1,55µm : applications aux télécommunications optiques et à la détection en espace libre / GaInAs/Al(Ga)InAs avalanche photodiodes for 1,55µm detection : applying to optical telecommunications and free space detection

Rouvié, Anne 19 January 2009 (has links)
Cette thèse présente l'étude des photodiodes à avalanche de structure SAGM, à zone d'avalanche en Al(Ga)InAs et à zone d'absorption en GaInAs réalisées sur substrat InP. Ces APD visent deux types d'applications: les télécommunications optiques pour les réseaux métro/accès à 10Gb/s et la détection en espace libre pour la profilométrie de type LIDAR. Tout d'abord, la mesure des coefficients d'ionisation de différents composés Aluminium a orienté notre choix du matériau d'avalanche vers l'AlInAs qui possède le rapport des coefficients d'ionisation le plus élevé. Ensuite, les mesures et les simulations du courant d'obscurité nous ont permis d'une part de déterminer son origine et de le réduire, et d'autre part, d'établir un modèle de la photodiode (courant d'obscurité, gain et bande passante) que nous avons validé grâce à l'étude de différentes structures verticales et de différentes géométries de diodes. Enfin, la caractérisation des APD réalisées a démontré simultanément un faible courant d'obscurité multiplié lobs.M = 2nA, une responsivité élevée R0(M = 1) = 0,9A.W-1 à 1,55µm, un faible facteur d'excès de bruit f(M = 10) = 3,5 et un produit gainxbande passante élevé G x B = 150GHz qui placent nos composants au meilleur niveau de l'état de l'art. Les mesures du taux d'erreur et de la sensibilité de photorécepteurs utilisant nos diodes valident l'amélioration qu'apportent ces APD par rapport à la concurrence. De plus, les premières mesures de sensibilité en espace libre confirment l'intérêt porté à ce type de photodiodes. / This thesis presents the study of SAGM avalanche photodiodes, with a thin Al(Ga)InAs avalanche layer and a GaInAs absorption layer, grown on InP substrate. These APDs target two applications : optical telecommunications for 10Gb/s metro/access networks and free space detection for LIDAR profilometry. First, the ionization coefficients measurements on several Aluminium compound materials lead us to choose AlInAs as avalanche material because of its high ionization coefficients ratio. Then dark current measurements and simulations allow us on one hand, to find its origin and to reduce its level, and on the other hand, to make out a photodiode model (dark current, multiplication factor and bandwidth) which was validated through the study of various APD vertical structures and diode geometries. Finally, the APDs characterization simultaneously demonstrates a low multiplied dark current Id,M = 2nA, a high responsivity R0(M = 1) = 0,9A.W-1 at 1,55µm, a low excess noise factor f(M = 10) = 3,5 and a high gain×bandwidth product G × B = 150GHz, which put our components at the best state of the art level. System measurements such as bit error rate or sensitivity carried out on photoreceivers using our diodes validate the improvement brought by these APDs compared to competitors. Moreover, the early free space sensitivity measurements confirm the interest showed to this kind of photodiodes.
2

Etude des défauts électriquement actifs dans les matériaux des capteurs d'image CMOS / Study of electrically active defects in CMOS image sensors

Domengie, Florian 15 February 2011 (has links)
La taille des pixels des capteurs d’image CMOS approche aujourd’hui lemicron. Dans ce contexte, le courant d’obscurité reste un paramètrecritique. Il se superpose au courant photogénéré en affectant la qualité del’image par l’apparition de pixels blancs. La contamination métalliqueintroduite au cours du procédé de fabrication joue un rôle prépondérant dansla création des défauts à l’origine de ce courant d’obscurité. Cette étude apermis d’établir les seuils de dangerosité de différents élémentsmétalliques sur la technologie imageur. L’origine de contaminationsaccidentelles a été identifiée lors de crises de rendement. Pour cela, untravail sur les techniques de détection a été mené par µPCD, DLTS, pompagede charge, SIMS, TEM et photoluminescence. La spectroscopie de courantd’obscurité (DCS), particulièrement efficace dans ce contexte, a étédéveloppée pour l’identification de contaminations en or, tungstène etmolybdène, avec des limites de détection qui atteignent 108 à 1010 at/cm3.Nous observons la quantification du courant d’obscurité et étudionsl’amplification du champ électrique sur le taux de génération afin demodéliser les pics de courant d’obscurité obtenus. Le comportement decertains métaux dans le silicium est précisé par ces expériences, et nousévaluons l’efficacité de piégeage de plusieurs substrats imageur. Ce travailconduit à la mise en place de protocoles de contrôle de la contaminationmétallique en salle blanche. / Pixels size of CMOS image sensors is now decreasing towards one micron. Inthat context, dark current is a critical parameter. It superimposes with thecurrent generated by photons and affects the image quality with whitepixels. The metallic contamination introduced during the fabrication processplays an important role in the generation of defects that induce this darkcurrent. This study has allowed to determine dangerousness thresholds ofseveral metals on the imager technology. The origin of some accidentalcontaminations has been identified during yield crisis. Some work withdetection techniques has been performed with µPCD, DLTS, charge pumping,SIMS, TEM and photoluminescence. Dark current spectroscopy (DCS),particularly adapted to this situation, has been developped for theidentification of gold, tunsgten and molybdenum contaminations, withdetection limits that reach 108 to 1010 at/cm3. We have observed the darkcurrent quantization and studied the electric field enhancement ofgeneration rate to model the dark current peaks obtained. The behavior ofsome metals in silicon is confirmed by these experiments and we haveevaluated the getter efficiency of different substrates for image sensors.This work has lead to the application of protocols for the metalliccontamination control in clean room.
3

Etude physique de la dégradation et modèles pour l'assurance durcissement des capteurs d'image en environnement spatial / Physical study of degradation and models for hardness assurance of imaging sensors

Martin, Emma 14 December 2012 (has links)
Suivi de notre développement ou encore la compréhension de l’Univers. Deux technologies de capteurs d’image sont actuellement utilisées dans les missions d’imagerie de la Terre et de l’espace : les imageurs CCD (Charge Coupled Device) et CMOS. L’environnement radiatif spatial est constitué de particules énergétiques qui dégradent les performances des imageurs. Et il s’avère que les dégradations réelles observées en vol dépendent fortement des conditions orbitales et de fonctionnement et sont donc très difficiles à prédire. L’étude menée dans le cadre de cette thèse a pour objet la compréhension des dégradations subies par les capteurs CCD et CMOS lorsqu’ils sont soumis à l’environnement radiatif spatial et la proposition de méthodes d’évaluation mieux adaptées pour obtenir une meilleure prédiction de la dégradation réelle d’un imageur en orbite à partir de tests d’irradiation réalisés au sol. La démarche entreprise a tout d’abord consisté à identifier les paramètres d’essais au sol pouvant potentiellement être à l'origine des différences observées entre les résultats sol et vol. Un plan d’essai d’irradiation aux rayons y et aux protons a ainsi été défini afin d’évaluer la dégradation des imageurs CCD et CMOS dans des conditions de fonctionnement et d’irradiation proches de celles en vol. Nous avons étudié l’impact des conditions de mise en opération du composant durant l’irradiation (polarisation, rapport cyclique, etc.) mais aussi l’impact des conditions d’irradiation (débit de dose, énergies des protons, etc.). Le périmètre de cette thèse se limite à l’étude des effets sur le courant d’obscurité, sur la dispersion pixel-à-pixel du courant d’obscurité et sur l’apparition des pixels chauds, qui sont, au premier ordre, les principaux critères de performances dégradés d’un imageur par les radiations. L’étude de l’influence du débit de dose de l’irradiation a montré un phénomène ELDRS (Enhanced Low Dose Rate Sensitivity) pour la première fois sur un capteur CCD polarisé dynamiquement avec un rapport cyclique ON/OFF. Les conditions de polarisation dynamique évaluées sur les APS ont démontré que la dégradation est d’autant plus importante que la fréquence d’activation et le rapport cyclique sont grands. Les irradiations aux protons sur les imageurs CMOS ont aussi montré l’apparition et la guérison de pixels chauds après irradiation à température ambiante ainsi que l'apparition du bruit de signal aléatoire télégraphique (RTS). Ces deux modes de dégradation ont été analysés plus en détail afin d'évaluer leur comportement en guérison pour le premier et extraire les statistiques d'apparition sur l'autre, sur un grand nombre de pixels. En parallèle, un code de simulation de l’effet de dose dans les oxydes de structures élémentaires MOS, ACDC (Accumulation des Charges en Dose Cumulée), a été adapté et utilisé. Ce code a permis de mettre en évidence les constantes de temps impliquées dans la dégradation par effets ionisants dans ces structures. Ces constantes de temps sont utilisées pour l'interprétation des effets de la polarisation dynamique. Les résultats expérimentaux obtenus sur les capteurs d’image CCD et CMOS ont un impact sur l’assurance durcissement. Les irradiations aux protons des imageurs CMOS ont notamment montré un phénomène de guérison des pixels chauds plus marqué que sur les autres pixels, montrant l'intérêt d'une caractérisation de plusieurs semaines après irradiation. Pour les irradiations au Co60 des imageurs CMOS, il est recommandé de ne pas utiliser des temps de polarisation ON trop courts (périodes de cycle petites) car cela peut conduire à une sous-estimation de la dégradation (charge piégée et états d'interface). / Two imaging sensor technologies are presently used in Earth and space imagery missions: Charge Couple Devices (CCD) and CMOS detectors. The space radiation environment is composed of energetic particles that degrade imaging sensor’s performances. It has been shown that real in-orbit degradation of imaging sensors are strongly dependent of orbital and operating conditions and are, as a consequence, difficult to predict. The work performed in this thesis has for purpose an understanding of space radiation-induced degradations for both CCD and CMOS technologies and the proposal of better suited assessment methods for these specific devices in order to better prediction of real in-orbit detector’s degradation from on-ground irradiation tests. The first step of the work focused on the identification of on-ground test parameters that could possibly explain the differences observed between inorbit and on-ground data. Thus an irradiation test plan to y-rays and proton particles has been defined in order to assess the imaging sensor’s degradation for both CCD and CMOS technologies in operating and irradiation conditions close to in-orbit ones. The effects of detector’s operation conditions during irradiation (bias, duty cycle, etc.) but also the irradiation conditions (dose rate, proton energy, etc.) have been studied. The present work focuses on effects on dark current, on its pixel to pixel dispersion and on the presence of hot pixels, which are, at first order, the main performance parameters of an imaging sensor that is degraded by space radiations. The study of the irradiation dose rate influence has shown an Enhanced Low Dose Rate Sensitivity (ELDRS) phenomenon observed for the first time on a CCD imager under dynamic bias condition with a ON/OFF duty cycle. The tested bias conditions CMOS image sensors have demonstrated that the higher the activation frequency and duty cycle, the higher is the degradation. Besides, the proton irradiations performed on CMOS detectors have induced hot pixels that anneal just after irradiation at room temperature. A random telegraphic signal (RTS) behaviour of the dark current has also been shown on CMOS sensors. In parallel to the irradiation tests, a simulation code of ionizing dose effects on oxides of MOS elementary structures has been adapted and used. This program, called ACDC (Accumulation des Charges en Dose Cumulée), has allowed to assess the quantification time constants of physical mechanisms that induce ionizing dose degradation on these structures. These time constants are used for the interpretation of dynamic bias effects.
4

Analyse des performances des photodiodes à superréseaux InAs/GaSb pour le moyen infrarouge / Performances analysis of InAs/GaSb superlattice photodetectors for midwave infrared domain

Delmas, Marie 04 December 2015 (has links)
Dans le domaine de la photodétection infrarouge (IR) haute performance refroidie, le photodétecteur à superréseaux (SR) InAs/GaSb est une filière émergente qui peut compléter les technologies déjà établies. Grâce à des années de recherche, l'Institut d'Electronique du Sud (IES) de l'Université de Montpellier a développé une expertise sur la croissance du matériau SR InAs/GaSb par épitaxie par jets moléculaires et sur la fabrication technologique des photodiodes pin dont les performances sont à l'état de l'art mondial dans le moyen IR (3-5µm). Au cours de cette thèse, nous avons étudié deux périodes différentes de SR comme zone active de photodiodes pin ayant une longueur d'onde de coupure à 5 µm à 80K : une riche en InAs (InAs-rich) et l'autre riche en GaSb (GaSb-rich). Ces structures SR présentent des caractéristiques électriques et électro-optiques très différentes. Notamment, les densités de courant de la structure InAs-rich sont très bonnes, de l'ordre de 10-8A/cm2 à 80K, alors que celles de la structure GaSb-rich sont deux décades plus élevées. L'objectif de cette thèse était donc d'analyser les performances de ces photodiodes. Pour cela, nous avons développé une méthode de simulation avec l'outil TCAD SILVACO. Appliquée tout d'abord aux structures InAs-rich, nous avons mis en évidence que ces diodes sont limitées à basse température (typiquement < 120K) par le courant de génération-recombinaison et/ou par le courant tunnel assisté par pièges. La durée de vie extraite de la simulation suit une variation en T-1/2, démontrant que les mécanismes limitant les photodiodes est la génération-recombinaison SRH. Appliquée aux structures GaSb-rich, l'approche SILVACO ne peut expliquer les résultats en courant. Nous démontrons que ces résultats sont fortement liés à la présence du champ électrique dans la zone d'absorption du composant. Cela génère à faible polarisation, un fort courant tunnel, au travers des états Wannier-Stark localisés, qui pénalise fortement le courant d'obscurité et cela malgré des améliorations obtenues au niveau du matériau. Pour finir, nous établissons des règles de dimensionnement de structures à barrière et nous proposons une structure à SR pour le lointain infrarouge. / Among the high performance cooled infrared (IR) photodetector systems, the InAs/GaSb superlattice (SL) is an emerging material which may complement the currently technologies already established. Over the last 10 years, the Institut d'Electronique du Sud (IES) of the University of Montpellier has developed skills in both the growth of SL materials by molecular beam epitaxy and the process fabrication of pin photodiodes. The photodiode fabricated by the IES group are at the state of the art in the mid IR (3 – 5 μm). During this thesis, we studied two structures with different SL periods for the pin active zone showing the same cut-off wavelength of 5 μm at 80K: the structure called InAs-rich structure presents InAs layer thicker than the GaSb layer in each SL period while this configuration is reversed in the case of the GaSb-rich structure. These SL structures have very different electrical and electro-optical characteristics. In particular, the current densities of the InAs-rich structure are very good, about 10-8 A/cm2 at 80K - two orders of magnitude greater than that of GaSb-rich. The aim of this thesis work was therefore to analyze the performance of these photodiodes. For this purpose, we developed a simulation method with the SILVACO TCAD tool. Using this tool, we found that the InAs-rich diodes are limited at low temperatures (typically under 120K) by generation recombination and/or by assisted tunneling currents. The lifetimes extracted from the simulation follows the T-1/2 law, which demonstrates that the limiting mechanism is SRH recombination. However, we found that we could not study the current densities of the GaSb-rich structure using the same procedure. We demonstrate that these results are strongly related to the presence of the electric field in the absorption zone of the device. This electric field generates, at low biases, a strong tunneling current through localized Wannier-Stark states, which strongly limits the overall current despite material improvements. Finally, we define the design conditions to achieve an optimized SL barrier structure and propose a design for SL structures targeting the long wavelength domain.
5

Etude de structures avancées pour la détection IR quantique à haute température / Study of advanced structures for HOT IR quantum detection

Hassis, Wala 16 April 2014 (has links)
La détection IR quantique met classiquement en jeu l'absorption de photons dans le matériau semi-conducteur II-VI CdHgTe. Cet alliage présente la particularité de permettre un ajustage du gap du semi-conducteur aux longueurs d'onde couvrant toute la gamme IR en jouant simplement sur la composition de l'alliage, ce qui en fait un matériau de choix. Cependant,les petits gaps en jeu ici imposent un refroidissement des plans focaux à des températures généralement cryogéniques (typiquement la centaine de Kelvins). Ce refroidissement représente naturellement une limite importante dans l'exploitation, l'encombrement et le coût de tels détecteurs.Un des grands défis à venir dans le domaine de la détection IR quantique est la détection à plus haute température. Une figure de mérite populaire pour examiner le fonctionnement de ces détecteurs est le courant d'obscurité qui reflète son bruit, dans le cas d'un détecteur limité par le bruit de courant (shot noise). Or, du fait des propriétés électriques du matériau semi-conducteur utilisé, ce courant d'obscurité augmente fortement avec le réchauffement du détecteur et rend son utilisation impossible à haute température. De plus, un autre phénomène apparaît également limiter le fonctionnement de nos photo-détecteurs : à hautes températures apparaît du bruit 1/f dont l'origine n'est pas parfaitement comprise aujourd'hui (matériau bulk ou interfaces, le débats reste ouvert…).Ce travail de thèse a pour objectif de comprendre les phénomènes physique régissant le bruit 1/f dans les photodiodes CdHgTe à travers la variation d'un bon nombre de paramètres physique et géométriques en vue de mettre en évidence la ou les corrélations de ce bruit avec ces variantes. / The IR sensor makes quantum conventionally involves the absorption of photons in the semiconductor CdHgTe II -VI material . This alloy has a feature to allow an adjustment of the gap of the semiconductor at wavelengths covering the whole IR range by simply varying the composition of the alloy, which makes it a material of choice . However, small gaps at stake here impose a focal cooling to cryogenic temperatures generally planes ( typically hundred Kelvins ) . This cooling naturally represents an important limitation in the operation , the size and cost of such detectors .One of the great challenges ahead in the field of quantum IR detection is the detection at higher temperatures . A figure of merit for popular review the operation of these sensors is the dark current , which reflects its sound , in the case of a noise-limited current ( shot noise) detector. However, because the electrical properties of the semiconductor material used , the dark current increases sharply with the heating of the detector and makes it impossible to use at high temperature . In addition, another phenomenon also appears to limit the functionality of our photo-detectors: high temperature appears on the 1 / f noise whose origin is not fully understood today ( or bulk material interfaces , the debate remains open ... ) .To understand the physical phenomena governing the 1 / f noise in HgCdTe photodiodes through the variation this thesis aims to lots of physical and geometrical parameters in order to highlight the correlations or noise with these variants .
6

Spectroscopie du courant d’obscurité induit par les effets de déplacement atomique des radiations spatiales et nucléaires dans les capteurs d’images CMOS à photodiode pincée / Dark current spectroscopy of space and nuclear environment induced displacement damage defects in pinned photodiode based CMOS image sensors

Belloir, Jean-Marc 18 November 2016 (has links)
Les imageurs CMOS représentent un outil d’avenir pour de nombreuses applications scientifiques de haut vol, tellesque l’observation spatiale ou les expériences nucléaires. En effet, ces imageurs ont vu leurs performancesdémultipliées ces dernières années grâce aux avancées incessantes de la microélectronique, et présentent aussi desavantages indéniables qui les destinent à remplacer les CCDs dans les futurs instruments spatiaux. Toutefois, enenvironnement spatial ou nucléaire, ces imageurs doivent faire face aux attaques répétées de particules pouvantrapidement dégrader leurs performances électro-optiques. En particulier, les protons, électrons et ions présents dansl’espace ou les neutrons de fusion nucléaire peuvent déplacer des atomes de silicium dans le volume du pixel et enrompre la structure cristalline. Ces effets de déplacement peuvent former des défauts stables introduisant des étatsd’énergie dans la bande interdite du silicium, et ainsi conduire à la génération thermique de paires électron-trou. Parconséquent, ces radiations non-ionisantes produisent une augmentation permanente du courant d’obscurité despixels de l’imageur et donc à une diminution de leur sensibilité et de leur dynamique. L’objectif des présents travauxest d’étendre la compréhension des effets de déplacement sur l’augmentation du courant d’obscurité dans lesimageurs CMOS. En particulier, ces travaux se concentrent sur l’étude de la forme de la distribution de courantd’obscurité en fonction du type, de l’énergie et du nombre de particules ayant traversé l’imageur, mais aussi enfonction des caractéristiques de l’imageur. Ces nombreux résultats permettent de valider physiquement etexpérimentalement un modèle empirique de prédiction de la distribution du courant d’obscurité pour une utilisationdans les domaines spatial et nucléaire. Une autre partie majeure de ces travaux consiste à utiliser pour la première foisla technique de spectroscopie de courant d’obscurité pour détecter et caractériser individuellement les défautsgénérés par les radiations non-ionisantes dans les imageurs CMOS. De nombreux types de défauts sont détectés etdeux sont identifiés, prouvant l’applicabilité de cette technique pour étudier la nature des défauts cristallins généréspar les effets de déplacement dans le silicium. Ces travaux avancent la compréhension des défauts responsables del’augmentation du courant d’obscurité en environnement radiatif, et ouvrent la voie au développement de modèles deprédiction plus précis, voire de techniques permettant d’éviter la formation de ces défauts ou de les faire disparaître. / CMOS image sensors are envisioned for an increasing number of high-end scientific imaging applications such asspace imaging or nuclear experiments. Indeed, the performance of high-end CMOS image sensors has dramaticallyincreased in the past years thanks to the unceasing improvements of microelectronics, and these image sensors havesubstantial advantages over CCDs which make them great candidates to replace CCDs in future space missions.However, in space and nuclear environments, CMOS image sensors must face harsh radiation which can rapidlydegrade their electro-optical performances. In particular, the protons, electrons and ions travelling in space or thefusion neutrons from nuclear experiments can displace silicon atoms in the pixels and break the crystalline structure.These displacement damage effects lead to the formation of stable defects and to the introduction of states in theforbidden bandgap of silicon, which can allow the thermal generation of electron-hole pairs. Consequently, nonionizingradiation leads to a permanent increase of the dark current of the pixels and thus a decrease of the imagesensor sensibility and dynamic range. The aim of the present work is to extend the understanding of the effect ofdisplacement damage on the dark current increase of CMOS image sensors. In particular, this work focuses on theshape of the dark current distribution depending on the particle type, energy and fluence but also on the imagesensor physical parameters. Thanks to the many conditions tested, an empirical model for the prediction of the darkcurrent distribution induced by displacement damage in nuclear or space environments is experimentally validatedand physically justified. Another central part of this work consists in using the dark current spectroscopy techniquefor the first time on irradiated CMOS image sensors to detect and characterize radiation-induced silicon bulk defects.Many types of defects are detected and two of them are identified, proving the applicability of this technique to studythe nature of silicon bulk defects using image sensors. In summary, this work advances the understanding of thenature of the radiation-induced defects responsible for the dark current increase in space or nuclear environments. Italso leads the way to the design of more advanced dark current prediction models, or to the development ofmitigation strategies in order to prevent the formation of the responsible defects or to allow their removal.

Page generated in 0.0661 seconds