Spelling suggestions: "subject:"covariance matrices"" "subject:"kovariance matrices""
11 |
Efficient Computational Tools for Variational Data Assimilation and Information Content EstimationSingh, Kumaresh 23 August 2010 (has links)
The overall goals of this dissertation are to advance the field of chemical data assimilation, and to develop efficient computational tools that allow the atmospheric science community benefit from state of the art assimilation methodologies. Data assimilation is the procedure to combine data from observations with model predictions to obtain a more accurate representation of the state of the atmosphere.
As models become more complex, determining the relationships between pollutants and their sources and sinks becomes computationally more challenging. The construction of an adjoint model ( capable of efficiently computing sensitivities of a few model outputs with respect to many input parameters ) is a difficult, labor intensive, and error prone task. This work develops adjoint systems for two of the most widely used chemical transport models: Harvard's GEOS-Chem global model and for Environmental Protection Agency's regional CMAQ regional air quality model. Both GEOS-Chem and CMAQ adjoint models are now used by the atmospheric science community to perform sensitivity analysis and data assimilation studies.
Despite the continuous increase in capabilities, models remain imperfect and models alone cannot provide accurate long term forecasts. Observations of the atmospheric composition are now routinely taken from sondes, ground stations, aircraft, and satellites, etc. This work develops three and four dimensional variational data assimilation capabilities for GEOS-Chem and CMAQ which allow to estimate chemical states that best fit the observed reality.
Most data assimilation systems to date use diagonal approximations of the background covariance matrix which ignore error correlations and may lead to inaccurate estimates. This dissertation develops computationally efficient representations of covariance matrices that allow to capture spatial error correlations in data assimilation.
Not all observations used in data assimilation are of equal importance. Erroneous and redundant observations not only affect the quality of an estimate but also add unnecessary computational expense to the assimilation system. This work proposes techniques to quantify the information content of observations used in assimilation; information-theoretic metrics are used.
The four dimensional variational approach to data assimilation provides accurate estimates but requires an adjoint construction, and uses considerable computational resources. This work studies versions of the four dimensional variational methods (Quasi 4D-Var) that use approximate gradients and are less expensive to develop and run.
Variational and Kalman filter approaches are both used in data assimilation, but their relative merits and disadvantages in the context of chemical data assimilation have not been assessed. This work provides a careful comparison on a chemical assimilation problem with real data sets. The assimilation experiments performed here demonstrate for the first time the benefit of using satellite data to improve estimates of tropospheric ozone. / Ph. D.
|
12 |
Distribution spectrale limite pour des matrices à entrées corrélées et inégalité de type Bernstein / Limiting spectral distribution for matrices with correlated entries and Bernstein-type inequalityBanna, Marwa 25 September 2015 (has links)
Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers. On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices. Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes $m$-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra. On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. $beta$-mélangeant).On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de $beta$-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données. Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement $beta$-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de Tropp (2012) pour des sommes de matrices indépendantes / In this thesis, we investigate mainly the limiting spectral distribution of random matrices having correlated entries and prove as well a Bernstein-type inequality for the largest eigenvalue of the sum of self-adjoint random matrices that are geometrically absolutely regular. We are interested in the asymptotic spectral behavior of sample covariance matrices and Wigner-type matrices having correlated entries that are functions of independent random variables. We show that the limiting spectral distribution can be obtained by analyzing a Gaussian matrix having the same covariance structure. This approximation approach is valid for both short and long range dependent stationary random processes just having moments of second order. Our approach is based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation technique. We also develop new tools including a concentration inequality for the spectral measure for matrices having $K$-dependent rows. This method permits to derive, under mild conditions, an integral equation of the Stieltjes transform of the limiting spectral distribution. Applications to matrices whose entries consist of functions of linear processes, ARCH processes or non-linear Volterra-type processes are also given.We also investigate the asymptotic behavior of Gram matrices having correlated entries that are functions of an absolutely regular random process. We give a concentration inequality of the Stieltjes transform and prove that, under an arithmetical decay condition on the absolute regular coefficients, it is almost surely concentrated around its expectation. The study is then reduced to Gaussian matrices, with a close covariance structure, proving then the universality of the limiting spectral distribution. Applications to stationary Harris recurrent Markov chains and to dynamical systems are also given.In the last chapter, we prove a Bernstein type inequality for the largest eigenvalue of the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality is an extension to the matrix setting of the Bernstein-type inequality obtained by Merlev`ede et al. (2009) and a generalization, up to a logarithmic term, of Tropp's inequality (2012) by relaxing the independence hypothesis
|
13 |
Chaos multiplicatif Gaussien, matrices aléatoires et applications / The theory of Gaussian multiplicative chaosAllez, Romain 23 November 2012 (has links)
Dans ce travail, nous nous sommes intéressés d'une part à la théorie du chaos multiplicatif Gaussien introduite par Kahane en 1985 et d'autre part à la théorie des matrices aléatoires dont les pionniers sont Wigner, Wishart et Dyson. La première partie de ce manuscrit contient une brève introduction à ces deux théories ainsi que les contributions personnelles de ce manuscrit expliquées rapidement. Les parties suivantes contiennent les textes des articles publiés [1], [2], [3], [4], [5] et pré-publiés [6], [7], [8] sur ces résultats dans lesquels le lecteur pourra trouver des développements plus détaillés / In this thesis, we are interested on the one hand in the theory of Gaussian multiplicative chaos introduced by Kahane in 1985 and on the other hand in random matrix theory whose pioneers are Wigner, Wishart and Dyson. The first part of this manuscript constitutes a brief introduction to those two theories and also contains the personal contributions of this work rapidly explained. The following parts contain the texts of the published articles [1], [2], [3], [4], [5] and pre-prints [6], [7], [8] on those results where the reader can find more detailed developments
|
14 |
Rastreamento de objetos usando descritores estatísticos / Object tracking using statistical descriptorsDihl, Leandro Lorenzett 13 March 2009 (has links)
Made available in DSpace on 2015-03-05T14:01:20Z (GMT). No. of bitstreams: 0
Previous issue date: 13 / Nenhuma / O baixo custo dos sistemas de aquisição de imagens e o aumento no poder computacional das máquinas disponíveis têm causado uma demanda crescente pela análise automatizada de vídeo, em diversas aplicações, como segurança, interfaces homem-computador, análise de desempenho esportivo, etc. O rastreamento de objetos através de câmeras de vídeo é parte desta análise, e tem-se mostrado um problema desafiador na área de visão computacional. Este trabalho apresenta uma nova abordagem para o rastreamento de objetos baseada em fragmentos. Inicialmente, a região selecionada para o rastreamento é
dividida em sub-regiões retangulares (fragmentos), e cada fragmento é rastreado independentemente. Além disso, o histórico de movimentação do objeto é utilizado para estimar sua posição no quadro seguinte. O deslocamento global do objeto é então obtido combinando os deslocamentos de cada fragmento e o deslocamento previsto, de modo a priorizar fragmentos com deslocamento coerente. Um esquema de atualização é aplicado no modelo / The low cost of image acquisition systems and increase the computational power of available machines have caused a growing demand for automated video analysis in several applications, such as surveillance, human-computer interfaces,
analysis of sports performance, etc. Object tracking through the video sequence is part of this analysis, and it has been a challenging problem in the computer vision area. This work presents a new approach for object tracking based on fragments. Initially, the region selected for tracking is divided into rectangular subregions (patches, or fragments), and each patch is tracked independently. Moreover, the motion history of the object is used to estimate its position in the subsequent frames. The overall displacement of the object is then obtained combining the displacements of each patch and the predicted displacement vector in order to priorize fragments presenting consistent displacement. An update scheme is also applied to the model, to deal with illumination and appearance c
|
15 |
Finite Rank Perturbations of Random Matrices and their Continuum LimitsBloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis.
Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE.
We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator.
In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter.
Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here.
This thesis is based in part on work to be published jointly with Bálint Virág.
|
16 |
Finite Rank Perturbations of Random Matrices and their Continuum LimitsBloemendal, Alexander 05 January 2012 (has links)
We study Gaussian sample covariance matrices with population covariance a bounded-rank perturbation of the identity, as well as Wigner matrices with bounded-rank additive perturbations. The top eigenvalues are known to exhibit a phase transition in the large size limit: with weak perturbations they follow Tracy-Widom statistics as in the unperturbed case, while above a threshold there are outliers with independent Gaussian fluctuations. Baik, Ben Arous and Péché (2005) described the transition in the complex case and conjectured a similar picture in the real case, the latter of most relevance to high-dimensional data analysis.
Resolving the conjecture, we prove that in all cases the top eigenvalues have a limit near the phase transition. Our starting point is the work of Rámirez, Rider and Virág (2006) on the general beta random matrix soft edge. For rank one perturbations, a modified tridiagonal form converges to the known random Schrödinger operator on the half-line but with a boundary condition that depends on the perturbation. For general finite-rank perturbations we develop a new band form; it converges to a limiting operator with matrix-valued potential. The low-lying eigenvalues describe the limit, jointly as the perturbation varies in a fixed subspace. Their laws are also characterized in terms of a diffusion related to Dyson's Brownian motion and in terms of a linear parabolic PDE.
We offer a related heuristic for the supercritical behaviour and rigorously treat the supercritical asymptotics of the ground state of the limiting operator.
In a further development, we use the PDE to make the first explicit connection between a general beta characterization and the celebrated Painlevé representations of Tracy and Widom (1993, 1996). In particular, for beta = 2,4 we give novel proofs of the latter.
Finally, we report briefly on evidence suggesting that the PDE provides a stable, even efficient method for numerical evaluation of the Tracy-Widom distributions, their general beta analogues and the deformations discussed and introduced here.
This thesis is based in part on work to be published jointly with Bálint Virág.
|
17 |
Real-time multi-target tracking : a study on color-texture covariance matrices and descriptor/operator switchingRomero Mier y Teran, Andrés 03 December 2013 (has links) (PDF)
Visual recognition is the problem of learning visual categories from a limited set of samples and identifying new instances of those categories, the problem is often separated into two types: the specific case and the generic category case. In the specific case the objective is to identify instances of a particular object, place or person. Whereas in the generic category case we seek to recognize different instances that belong to the same conceptual class: cars, pedestrians, road signs and mugs. Specific object recognition works by matching and geometric verification. In contrast, generic object categorization often includes a statistical model of their appearance and/or shape.This thesis proposes a computer vision system for detecting and tracking multiple targets in videos. A preliminary work of this thesis consists on the adaptation of color according to lighting variations and relevance of the color. Then, literature shows a wide variety of tracking methods, which have both advantages and limitations, depending on the object to track and the context. Here, a deterministic method is developed to automatically adapt the tracking method to the context through the cooperation of two complementary techniques. A first proposition combines covariance matching for modeling characteristics texture-color information with optical flow (KLT) of a set of points uniformly distributed on the object . A second technique associates covariance and Mean-Shift. In both cases, the cooperation allows a good robustness of the tracking whatever the nature of the target, while reducing the global execution times .The second contribution is the definition of descriptors both discriminative and compact to be included in the target representation. To improve the ability of visual recognition of descriptors two approaches are proposed. The first is an adaptation operators (LBP to Local Binary Patterns ) for inclusion in the covariance matrices . This method is called ELBCM for Enhanced Local Binary Covariance Matrices . The second approach is based on the analysis of different spaces and color invariants to obtain a descriptor which is discriminating and robust to illumination changes.The third contribution addresses the problem of multi-target tracking, the difficulties of which are the matching ambiguities, the occlusions, the merging and division of trajectories.Finally to speed algorithms and provide a usable quick solution in embedded applications this thesis proposes a series of optimizations to accelerate the matching using covariance matrices. Data layout transformations, vectorizing the calculations (using SIMD instructions) and some loop transformations had made possible the real-time execution of the algorithm not only on Intel classic but also on embedded platforms (ARM Cortex A9 and Intel U9300).
|
18 |
Distribution spectrale limite pour des matrices à entrées corrélées et inégalité de type Bernstein / Limiting spectral distribution for matrices with correlated entries and Bernstein-type inequalityBanna, Marwa 25 September 2015 (has links)
Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers. On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices. Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes $m$-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra. On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. $beta$-mélangeant).On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de $beta$-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données. Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement $beta$-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de Tropp (2012) pour des sommes de matrices indépendantes / In this thesis, we investigate mainly the limiting spectral distribution of random matrices having correlated entries and prove as well a Bernstein-type inequality for the largest eigenvalue of the sum of self-adjoint random matrices that are geometrically absolutely regular. We are interested in the asymptotic spectral behavior of sample covariance matrices and Wigner-type matrices having correlated entries that are functions of independent random variables. We show that the limiting spectral distribution can be obtained by analyzing a Gaussian matrix having the same covariance structure. This approximation approach is valid for both short and long range dependent stationary random processes just having moments of second order. Our approach is based on a blend of a blocking procedure, Lindeberg's method and the Gaussian interpolation technique. We also develop new tools including a concentration inequality for the spectral measure for matrices having $K$-dependent rows. This method permits to derive, under mild conditions, an integral equation of the Stieltjes transform of the limiting spectral distribution. Applications to matrices whose entries consist of functions of linear processes, ARCH processes or non-linear Volterra-type processes are also given.We also investigate the asymptotic behavior of Gram matrices having correlated entries that are functions of an absolutely regular random process. We give a concentration inequality of the Stieltjes transform and prove that, under an arithmetical decay condition on the absolute regular coefficients, it is almost surely concentrated around its expectation. The study is then reduced to Gaussian matrices, with a close covariance structure, proving then the universality of the limiting spectral distribution. Applications to stationary Harris recurrent Markov chains and to dynamical systems are also given.In the last chapter, we prove a Bernstein type inequality for the largest eigenvalue of the sum of self-adjoint centered and geometrically absolutely regular random matrices with bounded largest eigenvalue. This inequality is an extension to the matrix setting of the Bernstein-type inequality obtained by Merlev`ede et al. (2009) and a generalization, up to a logarithmic term, of Tropp's inequality (2012) by relaxing the independence hypothesis
|
19 |
Tests non paramétriques minimax pour de grandes matrices de covariance / Non parametric minimax tests for high dimensional covariance matricesZgheib, Rania 23 May 2016 (has links)
Ces travaux contribuent à la théorie des tests non paramétriques minimax dans le modèle de grandes matrices de covariance. Plus précisément, nous observons $n$ vecteurs indépendants, de dimension $p$, $X_1,ldots, X_n$, ayant la même loi gaussienne $mathcal {N}_p(0, Sigma)$, où $Sigma$ est la matrice de covariance inconnue. Nous testons l'hypothèse nulle $H_0:Sigma = I$, où $I$ est la matrice identité. L'hypothèse alternative est constituée d'un ellipsoïde avec une boule de rayon $varphi$ autour de $I$ enlevée. Asymptotiquement, $n$ et $p$ tendent vers l'infini. La théorie minimax des tests, les autres approches considérées pour le modèle de matrice de covariance, ainsi que le résumé de nos résultats font l'objet de l'introduction.Le deuxième chapitre est consacré aux matrices de covariance $Sigma$ de Toeplitz. Le lien avec le modèle de densité spectrale est discuté. Nous considérons deux types d'ellipsoïdes, décrits par des pondérations polynomiales (dits de type Sobolev) et exponentielles, respectivement.Dans les deux cas, nous trouvons les vitesses de séparation minimax. Nous établissons également des équivalents asymptotiques exacts de l'erreur minimax de deuxième espèce et de l'erreur minimax totale. La procédure de test asymptotiquement minimax exacte est basée sur une U-statistique d'ordre 2 pondérée de façon optimale.Le troisième chapitre considère une hypothèse alternative de matrices de covariance pas nécessairement de Toeplitz, appartenant à un ellipsoïde de type Sobolev de paramètre $alpha$. Nous donnons des équivalents asymptotiques exacts des erreurs minimax de 2ème espèce et totale. Nous proposons une procédure de test adaptative, c-à-d libre de $alpha$, quand $alpha$ appartient à un compact de $(1/2, + infty)$.L'implémentation numérique des procédures introduites dans les deux premiers chapitres montrent qu'elles se comportent très bien pour de grandes valeurs de $p$, en particulier elles gagnent beaucoup sur les méthodes existantes quand $p$ est grand et $n$ petit.Le quatrième chapitre se consacre aux tests adaptatifs dans un modèle de covariance où les observations sont incomplètes. En effet, chaque coordonnée du vecteur est manquante de manière indépendante avec probabilité $1-a$, $ ain (0,1)$, où $a$ peut tendre vers 0. Nous traitons ce problème comme un problème inverse. Nous établissons ici les vitesses minimax de séparation et introduisons de nouvelles procédures adaptatives de test. Les statistiques de test définies ici ont des poids constants. Nous considérons les deux cas: matrices de Toeplitz ou pas, appartenant aux ellipsoïdes de type Sobolev / Our work contributes to the theory of non-parametric minimax tests for high dimensional covariance matrices. More precisely, we observe $n$ independent, identically distributed vectors of dimension $p$, $X_1,ldots, X_n$ having Gaussian distribution $mathcal{N}_p(0,Sigma)$, where $Sigma$ is the unknown covariance matrix. We test the null hypothesis $H_0 : Sigma =I$, where $I$ is the identity matrix. The alternative hypothesis is given by an ellipsoid from which a ball of radius $varphi$ centered in $I$ is removed. Asymptotically, $n$ and $p$ tend to infinity. The minimax test theory, other approaches considered for testing covariance matrices and a summary of our results are given in the introduction.The second chapter is devoted to the case of Toeplitz covariance matrices $Sigma$. The connection with the spectral density model is discussed. We consider two types of ellipsoids, describe by polynomial weights and exponential weights, respectively. We find the minimax separation rate in both cases. We establish the sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. The asymptotically minimax test procedure is a U-statistic of order 2 weighted by an optimal way.The third chapter considers alternative hypothesis containing covariance matrices not necessarily Toeplitz, that belong to an ellipsoid of parameter $alpha$. We obtain the minimax separation rate and give sharp asymptotic equivalents of the minimax type II error probability and the minimax total error probability. We propose an adaptive test procedure free of $alpha$, for $alpha$ belonging to a compact of $(1/2, + infty)$.We implement the tests procedures given in the previous two chapters. The results show their good behavior for large values of $p$ and that, in particular, they gain significantly over existing methods for large $p$ and small $n$.The fourth chapter is dedicated to adaptive tests in the model of covariance matrices where the observations are incomplete. That is, each value of the observed vector is missing with probability $1-a$, $a in (0,1)$ and $a$ may tend to 0. We treat this problem as an inverse problem. We establish the minimax separation rates and introduce new adaptive test procedures. Here, the tests statistics are weighted by constant weights. We consider ellipsoids of Sobolev type, for both cases : Toeplitz and non Toeplitz matrices
|
20 |
Contribuições à análise de outliers em modelos de equações estruturais / Contributions to the analysis of outliers in structural equation modelsBulhões, Rodrigo de Souza 10 May 2013 (has links)
O Modelo de Equações Estruturais (MEE) é habitualmente ajustado para realizar uma análise confirmatória sobre as conjecturas de um pesquisador acerca do relacionamento entre as variáveis observadas e latentes de algum estudo. Na prática, a maneira mais recorrente de avaliar a qualidade das estimativas de um MEE é a partir de medidas que buscam mensurar o quanto a usual matriz de covariâncias clássicas ou ordinárias se distancia da matriz de covariâncias do modelo ajustado, ou a magnitude do afastamento entre as funções de discrepância do modelo hipotético e do modelo saturado. Entretanto, elas podem não captar problemas no ajuste quando há muitos parâmetros a estimar ou bastantes observações. A fim de detectar irregularidades no ajustamento resultantes do impacto provocado pela presença de outliers no conjunto de dados, este trabalho contemplou alguns indicadores conhecidos na literatura, como também considerou alterações no Índice da Qualidade do Ajuste (ou GFI, de Goodness-of-Fit Index) e no Índice Corrigido da Qualidade do Ajuste (ou AGFI, de Ajusted Goodness-of-Fit Index), ambos nas expressões para estimação de parâmetros pelo método de Máxima Verossimilhança, que consistiram em substituir a tradicional matriz de covariâncias pelas matrizes de covariâncias computadas com os seguintes estimadores: Elipsoide de Volume Mínimo, Covariância de Determinante Mínimo, S, MM e Gnanadesikan-Kettenring Ortogonalizado (GKO). Através de estudos de simulação sobre perturbações de desvio de simetria e excesso de curtose, em baixa e alta frações de contaminação, em diferentes tamanhos de amostra e quantidades de variáveis observadas afetadas, foi possível constatar que as propostas de modificação do GFI e do AGFI adaptadas pelo estimador GKO foram as únicas que conseguiram ser informativas em todas essas situações, devendo-se escolher a primeira ou a segunda respectivamente quando a quantidade de parâmetros a serem estimados é baixa ou elevada. / The Structural Equation Model (SEM) is usually set to perform a confirmatory analysis on the assumptions of a researcher about the relationship between the observed variables and the latent variables of such a study. In practice, the most iterant way of evaluating the quality of the estimates of a SEM comes either from procedures of measuring how distant the usual classic or ordinary covariance matrix is from the covariance matrix of the adjusted model, or from the magnitude of the hiatus in discrepancy functions of both the hypothetical model and the saturated model. Nevertheless, they may fail to capture problems in the adjustment in the occurrence of either several parameters to estimate or several observations. This study included indicators known in the literature in order to detect irregularities in the adjustment resulting from the impact caused by the presence of outliers in the data set. This study has also considered changes in both the Goodness-of-Fit Index (GFI) and the Adjusted Goodness-of-Fit Index (AGFI) in the expressions for parameter estimation by Maximum Likelihood method, which consisted in replacing the traditional covariance matrix by the robust covariance matrices computed through the following estimators: Minimum Volume Ellipsoid, Minimum Covariance Determinant, S, MM and Orthogonalized Gnanadesikan-Kettenring (OGK). Through simulation studies on disturbances of both symmetry deviations and excess kurtosis in both low and high fractions of contamination in different sample sizes and quantities of affected observed variables it has become clear that the proposals of modification of both the GFI and the AGFI adapted by the OGK estimator were the only ones able to be informative in all these situations. It must be considered that GFI or AGFI must be used when the number of parameters to be estimated is either low or high, respectively.
|
Page generated in 0.1182 seconds