• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UNSTEADY BUFFETING FORCES AND GUST RESPONSE OF BRIDGES WITH PROPER ORTHOGONAL DECOMPOSITION APPLICATIONS / POD解析を用いた橋梁の変動空気力及びガスト応答に関する研究 / POD カイセキ オ モチイタ キョウリョウ ノ ヘンドウ クウキリョク オヨビ ガスト オウトウ ニ カンスル ケンキュウ

Le, Thai Hoa 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2843号 ; 請求記号: 新制/工/1418 ; 整理番号: 25528 / The unsteady buffeting forces and the gust response prediction of bridges in the atmospheric turbulent flows is recently attracted more attention due to uncertainties in both experiment and analytical theory. The correction functions such as the aerodynamic admittance function and the spatial coherence function have been supplemented to cope with limitations of the quasi-steady theory and strip one so far. Concretely, so-called single-variate quasi-steady aerodynamic admittance functions as the transfer functions between the wind turbulence and induced buffeting forces, as well as coherence of wind turbulence has been widely applied for the gust response prediction. Recent literatures, however, pointed out that the coherence of force exhibits higher than that of turbulence. These correction functions, in the other words, contain their uncertainties which are required to be more understanding. Proper orthogonal decomposition (POD), known as the Karhunen-Loeve decomposition has been applied popularly in many engineering fields. Main advantage of the POD is that the multi-variate correlated random fields/processes can be decomposed and described in such simplified way as a combination of limited number of orthogonally low-order dominant eigenvectors (or turbulent modes) which is convenient and applicable for order-reduced representation, simulation of the random fields/processes such as the turbulent fields, turbulent-induced force fields and stochastic response prediction as well. The POD and its proper transformations based on either zero-time-lag covariance matrix or cross spectral one of random fields/processes have been branched by either the covariance proper transformation (CPT) in the time domain or the spectral proper transformation (SPT) in the frequency domain. So far, the covariance matrix-based POD and its covariance proper transformation in the time domain has been used almost in the wind engineering topics due to its simplification in computation and interpretation. In this research, the unsteady buffeting forces and the gust response prediction of bridges with emphasis on the POD applications have been discussed. Investigations on the admittance function of turbulent-induced buffeting forces and the coherence one of the surface pressure as well as the spatial distribution and correlation of the unsteady pressure fields around some typically rectangular cylinders in the different unsteady flows have been carried out thanks to physical measurements in the wind tunnel. This research indicated effect of the bluff body flow and the wind-structure interaction on the higher coherence of buffeting forces than the coherence of turbulence, thus this effect should be accounted and undated for recent empirical formulae of the coherence function of the unsteady buffeting forces. Especially, the multi-variate nonlinear aerodynamic admittance function has been proposed in this research, as well as the temporo-spectral structure of the coherence functions of the wind turbulence and the buffeting forces has been firstly here using the wavelet transform-based coherence in order to detect intermittent characteristics and temporal correspondence of these coherence functions. In POD applications, three potential topics in the wind engineering field have been discussed in the research: (i) analysis and identification, modeling of unsteady pressure fields around model sections; (ii) representation and simulation of multi-variate correlated turbulent fields and (iii) stochastic response prediction of structures and bridges. Especially, both POD branches and their proper transformations in the time domain and the frequency one have been used in these applications. It found from these studies that only few low-order orthogonal dominant modes are enough accuracy for representing, modeling, simulating the correlated random fields (turbulence and unsteady surface pressure, unsteady buffeting forces), as well as predicting stochastic response of bridges in the time and frequency domains. The gust response prediction of bridges has been formulated in the time domain at the first time in this research using the covariance matrix-based POD and its covariance proper transformation which is very promising to solve the problems of the nonlinear and unsteady aerodynamics. Furthermore, the physical linkage between these low-order modes and physical causes occurring on physical models has been interpreted in some investigated cases. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13372号 / 工博第2843号 / 新制||工||1418(附属図書館) / 25528 / UT51-2007-Q773 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 松本 勝, 教授 河井 宏允, 准教授 白土 博通 / 学位規則第4条第1項該当

Page generated in 0.126 seconds