Spelling suggestions: "subject:"cover crops -- oregon"" "subject:"cover crops -- pregon""
1 |
Cover crops and biochemical functional diversity in relation to nitrogen availability in soilBurket, John Zimmerman 07 May 1998 (has links)
Nitrogen availability in agricultural soils from fertilizer, plant residue inputs, and soil organic matter has important implications beyond crop yield. Legume winter cover crops and one fourth the recommended N rate on sweet corn resulted in yields equivalent to those at the recommended rate in the Willamette Valley of western Oregon. Cereal rye winter crops absorbed an average of 40 kg N/ha that otherwise would have been leached, but did not effectively replace fertilizer N. Cereal rye as a cover crop therefore shows an ability to immobilize N from fertilizer. This was further confirmed in an experiment with "N labeled urea where results showed that N derived from fertilizer in sweet corn or cereal rye plant residue was less available for crop uptake and loss from the system than inorganic N or N directly immobilized from fertilizer. Losses of N from fertilizer ranged from 40 to 73% of that which was in the soil over winter. Mineralization of organic matter N is an important process in N availability, especially when cover crops are used to replace fertilizer. Finding a general indicator or predictor of N mineralization in soils would help in reducing fertilizer N costs and leaching of inorganic N that is applied in excess of crop needs. In a screening of 17 biological and chemical properties of 19 differently managed soils from around the state of Oregon, a model using total soil N and ��-glucosidase activity provided the best model of mineralized N uptake by ryegrass. Biological activity is primarily responsible for the transformations that result in N availability in soils. Management of soils directly impacts soil biology, and results from multivariate analyses of biological and chemical parameters in differently managed soils showed that disturbance creates an overriding common biochemical state in soils. Beyond disturbance, vegetation and the nature of organic inputs also impart recognizable multivariate patterns in soils managed differently. These results suggest that indicators independent of soil type may be used to discern effects of management on agricultural soils. / Graduation date: 1999
|
2 |
Assessment of variability and monitoring methods for leaching under cover crop managementHess, Mario 16 May 1995 (has links)
The contamination of ground water resources represents a serious
problem and a prominent threat to the health of our society. This study
focuses on the leaching of inorganic anions as a function of agricultural
practices under natural field conditions. In order to enhance the
understanding of such leaching processes, this thesis evaluates the spatial
variability of the leaching characteristics of a site, the factors controlling
percolation, and the use of a cereal rye cover crop to reduce nitrate leaching.
Thirty-two Passive Capillary Wick Samplers (PCAPS) and 32 suction
cups were installed at a depth of 120 cm under row crop produced in a
Woodburn Variant loam (fine-loamy mixed mesic Aquultic Argixeroll).
Significant correlation for the water flux was seen at the 2.0 m distance,
beyond which values were uncorrelated. No spatial correlation was seen in
hydrodynamic dispersion coefficients. Percolation was independent of field saturated
hydraulic conductivity, while the quantity of incident water was
strongly correlated with percolation. The occurrence of preferential flow
affected the leaching process as documented by solute breakthrough ahead of
the main solute peak. Rates of nitrogen fertilizer application were
proportional to observed nitrate leaching losses. The cover crop significantly
reduced the amount of nitrate leaching at all N fertilizer application rates. At
the recommended rate, nitrate-N concentrations were lowered on average
from 22.2 to 9.9 mg/l; cumulative N mass losses were cut by 62% due to plant
uptake by the cover crop. The study demonstrated the importance of
conducting long-term field experiments under natural conditions to
accurately assess leaching processes. / Graduation date: 1996
|
Page generated in 0.0771 seconds