• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AGRONOMIC AND PHYSIOLOGICAL RESPONSES OF COWPEAS (VIGNA UNGUICULATA L. WALP) EXPOSED TO WATER STRESS.

Tewolde, Haile January 1984 (has links)
No description available.
2

Morphological and physiological responses of cowpea (Vigna unguiculata (L) Walp.) cultivars to induced water stress and phosphorus nutrition

Chiulele, Rogerio Marcos 12 1900 (has links)
Thesis (MScAgric) -- University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Cowpeas are produced under low and irregular rainfall in most of arid and semi-arid areas of sub-Saharan Africa. Growth and yield are therefore reduced due to the occurrence of water stress during the growing season. Knowledge of the responses and adaptive mechanisms of cowpeas to water stress may help to improve the management practices for these areas. Therefore, three glasshouse experiments were conducted at Welgevallen Experimental Farm of the University of Stellenbosch to test the responses of two cowpea cultivars to water stress. In the first experiment, physiological responses were used to identify those physiological parameters, which can be used to distinguish between drought tolerant and susceptible cowpea cultivars. In the second experiment, some of the identified physiological parameters together with some morphological growth responses, yield and grain protein content of the same two cowpea cultivars were used to identify which is the more tolerant cultivar. Tn the third experiment, the hypothesis that increased phosphorus supply may improve the tolerance of cowpea plants to water stress and their ability of recover from the stress was tested. The results showed that water stress affected water relations, morphological growth parameters, yield and grain protein content, but increasing P supply reduced the effect of water stress and promoted more rapid recovery after re-watering. Water relations were affected by water stress because it reduced relative water content, which resulted in reduced water potential and increased leaf diffusive resistance and proline accumulation. Morphological growth responses and yields were affected because water stress reduced the leaf area, which resulted in reduced biomass production and seed yield. Lower leaf area under water stress was the result of the reduced number of leaves and leaf expansion rate, but the number of leaves was the most important parameter. Reduced seed yield was due to reduced number of pods. The responses of the two cultivars tested were different. AB Wit, which performed better under well-watered conditions was more affected by water stress due to its larger leaf area that resulted in excessive water loss by transpiration. ACH14 was more drought tolerant than AB Wit due to a combination of a more rapid stomatal closure and proline accumulation, which induced osmotic adjustment, and which in tum helped to maintain higher water potentials. The increased P supply reduced the effect of the water stress. High-P level plants showed higher root growth, which resulted in more water uptake and larger leaf area during the water stress period, and after re-watering these plants recovered more rapidly. The more rapid recovery from stress was the result of enhanced root growth and leaf expansion rate and most probably due to increased water uptake. High-P level plants also showed more rapid leaf appearance and plant growth at earlier stages compared to the low-P level plants. / AFRIKAANSE OPSOMMING: Akkerbone word onder toestande van lae en wisselvallige reenval in baie ariede en semi-ariede gebiede van Afrika verbou. In hierdie gebiede word groei en produksie dikwels beperk deur water tekorte gedurende die groei seisoen. Kennis van reaksies en aanpassingsmeganismes van akkerbone teenoor water tekorte mag dus help om produksietegnieke in bogenoemde gebiede te verbeter. Om hierdie rede is drie glashuiseksperimente onder gekontroleerde toestande op die Welgevallen Proefplaas van die Universiteit van Stellenbosch uitgevoer. In die eerste eksperiment is fisiologiese reaksies van twee cultivars gebruik om eienskappe te identifiseer wat gebruik kan word om tussen droogteweerstandbiedende en droogte gevoelige cultivars te onderskei. In die tweede eksperiment is sommige van die geidentifiseerde eienskappe asook morfologiese groei, opbrengs en kwaliteitsreaksies van dieselfde twee cultivars gebruik om die meer droogte weerstandbiedende cultivar te identifiseer. In die derde eksperiment is die hipotese dat P-bemesting die droogteweerstandbiedendheid teen en herstelvermoe na droogte kan verbeter, getoets. Die resultate toon dat water tekorte beide plantwaterverhoudings, morfologiese eienskappe asook opbrengs en proteieninhoud beinvloed, maar dat hoe P-peile die invloed van water tekorte verminder en herstelverrnoe na die droogte verbeter. Plant-waterverhoudings is bemvloed omdat water tekorte relatiewe waterinhoud van plante verlaag wat aanleiding gee tot verlaagde plantwaterpotensiale, verhoogde huidmondjie weerstand en 'n toename in prolien inhoud. Morfologiese eienskappe en opbrengs is benadeel weens 'n veri aging in blaaroppervlakte wat fotosintetiese vermoe en gevolglik ook biomassaproduksie en saad opbrengs benadeel. Verlaagde blaaroppervlakte tydens water tekorte was hoofsaaklik die gevolg van 'n vermindering in aantal blare, terwyl verlaagde saadopbrengs grootliks die resultaat van 'n vermindering in aantal peule was. Die cultivar AB Wit wat die hoogste opbrengs onder gunstige groeitoestande gelewer het, is die meeste bemvloed deur water tekorte omdat die welige blaargroei van hierdie cultivar, luukse waterverbruik en groter transpirasie verliese veroorsaak het. Die cultivar ACH 14 daarteenoor het waterverliese beperk deurdat die huidmondjies vinniger gesluit het en verhoogde prolien-inhoude, osmotiese aanpassings veroorsaak het. Dit het gehelp om waterpotensiale instand te hou. Hierdie cultivar was gevolglik meer droogte weerstandbiedend as AB Wit. Hoe vlakke van P-bemesting het die effek van water tekorte verminder weens verbeterde wortelgroei. Dit het wateropname gedurende en na die peri ode van water stremming verbeter sodat plante vinniger herstel het na die droe periode. Plante wat by hoe P-peile gegroei is het ook 'n verhoogde blaarverskyningstempo en 'n toename in groei tydens die vroee ontwikkelingstadiums getoon.
3

Response of dual-purpose cowpea landraces to water stress.

Mashilo, Jacob. January 2013 (has links)
Cowpea (Vigna unguiculata (L.) Walp) is an important protein-rich grain legume of major economic importance. It is widely grown by small-scale farmers in the arid and semi-arid regions of the world where it is cultivated for its leaves, fresh immature pods and dry grains. However, it is also an underutilized grain legume. In sub-Saharan Africa where most of the cowpea is produced, drought stress is one of the major factors limiting its productivity. Despite the inherent capacity to survive drought stress, several cowpea varieties are affected by mid and late season drought. Therefore, varieties with a higher tolerance to drought stress are required to obtain higher and more stable yields. The objectives of this study were: (i) to determine morphological responses of four dual-purpose cowpea landraces to water deficits during vegetative and reproductive stages (ii) to determine physiological responses of four dual-purpose cowpea landraces to water deficits and recovery during the reproductive stage (iii) to determine yield performance of cowpea landraces after recovery from water stress and how this relates to (ii) above. Four cowpea landraces namely; Lebudu, Lehlodi, Sejwaleng and Morathathane collectedfrom Kgohloane and Ga-Mphela villages, Limpopo Province, South Africa were used in the study. Pot experiments were conducted under glasshouse conditions at the Controlled Environment Facility (CEF), University of KwaZulu-Natal. The first pot experiment evaluated the morphological responses of four cowpea landraces to water stress and recovery. The study was conducted as a single factor experiment laid out in randomized complete block design (RCBD). The treatments (four cowpea landraces) were each planted in 40 pots giving a total of 160 experimental units (drained polyethylene pots with a 5 litre capacity). Each plant in each pot was treated as a replicate. Plants were well-watered until the formation of six fully expanded trifoliates, then irrigation was withheld for 28 days to simulate drought stress during the vegetative growth. The imposition of drought stress was terminated by re-watering all plants after 28 days. The cowpea plants were re-watered sufficiently and allowed to grow until the four landraces reached 50% flowering stage. Watering was withheld again at 50% flowering for a two-week period for all the four landraces to simulate drought stress during the reproductive growth. The second experiment was conducted to investigate physiological responses of the four cowpea landraces to water stress during the reproductive stage. The experiment was laid out as a 4 x 2 factorial treatment structure in randomized complete design (CRD) with the following three factors: cowpea landraces – 4 levels (Lebudu, Lehlodi, Sejwaleng and Morathathane), water regimes – 2 levels (stressed and well-watered) treatment combinations each replicated 20 times (20 pots each containing one plant) giving a total of 160 experimental units (drained polyethylene pots with a 5 litre capacity). Data on morphological responses were collected and included: number of green vs. senesced leaves, visual assessment of leaf greenness, stem, branch greenness and survival percentage. Physiological responses to water stress were determined during the reproductive stage and included: leaf water potential, relative water content, stomatal conductance, proline content, chlorophyll content, carotenoid content, chlorophyll a content, phenolics (free and membrane-bound), total antioxidant capacity and chlorophyll fluorescence parameters (Fv/Fm). Genstat 14th edition (VSN International, UK) was used to perform analyses of variance (ANOVA) and differences between means were determined by the Least Significant Differences (LSD) at the 5% probability level. Landraces showed different morphological responses during both vegetative and reproductive growth stages. Lebudu, Lehlodi and Sejwaleng displayed a strong ability to maintain stem greenness longer as compared to Morathathane during vegetative growth. Lebudu delayed leaf senescence more than other landraces; no differences in survival were observed. All landraces survived for 28 days without water and resumed growth after re-watering. During the reproductive stage, Lebudu displayed a strong ability to maintain leaf, branches and stem greenness longer and showed relatively higher tolerance to drought stress compared to other three landraces. Water stress caused a decline in leaf water potential, relative water content, carotenoid content, chlorophyll content, stomatal conductance and increased proline content, phenolics, chlorophyll a content, total antioxidant capacity and while chlorophyll fluorescence parameter, Fv/Fm, was not affected. All landraces maintained higher relative water content above a critical threshold with Sejwaleng maintaining a significantly higher RWC (69%) than Lehlodi, Lebudu and Morathathane. Morathathane developed a more negative leaf water potential at maximum stress than Lebudu, Lehlodi and Sejwaleng. Stomatal closure was observed in all cowpea landraces during water stress, but re-opened after re-watering. Chlorophyll content was considerably reduced in Morathathane as compared to Lebudu, Lehlodi and Sejwaleng. No significant differences were observed between the cowpea landraces with respect to carotenoid content at maximum stress. Chlorophyll a content increased significantly for Morathathane as compared to Lebudu, Lehlodi and Sejwaleng. High accumulation of proline was observed for Lebudu, Lehlodi and Morathathane as compared to Sejwaleng, which showed a very slow accumulation of proline. Lebudu, Lehlodi and Sejwaleng showed an increase in phenolic compounds while a decline was observed for Morathathane. Total antioxidant capacity (TAOC) was high in all cowpea landraces during water stress. Also, all chlorophyll fluorescence parameters showed that cowpea landraces had efficient photo-protection mechanisms during drought stress. After re-watering, relative water content, leaf water potential, stomatal conductance, chlorophyll content, carotenoids, chlorophyll a, proline content and TAOC recovered and reached the same level as that of well-watered plants. All four landraces were re-watered after the imposition of stress and above ground biomass, pod mass and number and seed yield determined. Although there was a reduction in the total above-ground biomass, pod mass and number in all four landraces under water stress compared to the well–watered treatment; this was not statistically significant (P > 0.05). Furthermore, no significant differences (P > 0.05) were observed between the four landraces with respect to seed yield under stressed and well-watered conditions. This study established that cowpea landraces vary with respect to the various morphological and physiological adaptive mechanisms in response to water deficits. Such adaptive mechanisms probably ensure their survival under severe water stress conditions until the next rainfall and therefore allowing them to produce reasonably relatively higher leaf and seed yield. Detailed knowledge of these mechanisms in the landraces could be useful in the genetic enhancement and breeding for drought tolerance in the existing cowpea germplasm. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
4

Cowpea seed quality in response to production site and water stress.

Odindo, Alfred Oduor. January 2007 (has links)
Cowpea (Vigna unguiculata. L) is an important African crop. However, it is also an underutilized grain legume. Consequently, there is not enough research data on cowpea seed physiology. Whereas there is evidence of cowpea being a drought tolerant crop, there is no evidence to associate plant drought tolerance with seed quality in response to water stress. This study sought to understand the effect of production site and water stress on cowpea seed quality development with respect to germination capacity and vigour. Patterns of raffinose family of oligosaccharides (RFO) during seed development to mature dry stage were used to physiologically relate seed performance to water stress. The effect of water stress and exogenous ABA on the accumulation of stress LEA proteins (dehydrins) in relation to seed quality development and germination was investigated. RFOs are known for their roles in desiccation sensitivity but no studies have shown their significance in cowpeas. Seeds of six cowpea cultivars were produced at two distinct growth sites characterised by irrigated and dry land conditions. The seeds were assessed during six developmental stages, for water content, dry matter accumulation, and performance. Harvested seeds were then planted in a pot experiment under controlled conditions to examine the effect of water stress on seed quality development and data collected during three developmental stages. Harvested seeds from the pot experiment were subsequently analyzed for changes in RFO accumulation during development using gas chromatography. The seeds were also used to investigate the effect of water stress and ABA on the accumulation of stress LEA proteins (dehydrins) in relation to seed quality development in cowpea. In addition, this study evaluated the use of image analysis as a method that can be used to objectively determine seed coat colour variation in cowpea. Statistical variation in individual seed’s solute leakage for cowpea cultivars differing in seed coat colour and produced under different environmental conditions was explored and correlations were done between seed conductivity test with other aspects of seed performance during germination. Furthermore the results of the conductivity test were compared with accelerated aging test, in relation to seed performance. The study provided evidence that cowpea seed lots produced under different environmental, and possibly management conditions may not differ with respect to seed quality as determined by germination capacity and vigour. However, significant differences between sites with respect to seed maturation patterns determined by water content and dry matter accumulation were observed. Adverse maternal environmental effects on the subsequent performance of seeds in a drought tolerant crop may not necessarily lead to poor performance. Cultivar differences in response to simulated drought conditions at the whole plant and tissue level can be considerable and highly variable; however, these differences may not have adverse effects on the germination and vigour of the seeds. Drought avoidance mechanisms at the whole plant level in cowpea are quite efficient in allowing the species to adapt to simulated drought conditions. These mechanisms may allow the cowpea cultivars to maintain metabolism and restore conditions for their continued growth under water stress; and produce few seeds of high germination capacity and vigour. Stachyose was found to be the predominant member of the raffinose family of oligosaccharides in cowpea. It is suggested that stachyose accumulation could be used as an indicator of stress tolerance in cowpea. However, the relationship between RFO concentration and the acquisition of desiccation remained as a matter of speculation in the present study and is still generally inconclusive. There was no evidence to suggest the acquisition of maximum desiccation tolerance is associated with maximum seed vigour. It is suggested in cowpea, which is drought tolerant, that maximum vigour does not necessarily imply the acquisition of maximum desiccation tolerance; rather there is a minimum level of desiccation tolerance that is required for the development of optimal seed vigour. The use of an in vivo approach in the study of LEA function in cowpea enabled the accurate comparison of two different groups of LEA proteins in developing cowpea seeds under conditions of water stress and in relation to germination and vigour. Both group 1 LEA and group 2 LEA (dehydrin) were shown to increase in concentration in response to water stress. In addition group 1 LEA protein was observed to be relatively abundant in cowpea seeds. A maternal influence on LEA protein gene expression under conditions of water stress, which may induce dehydrin accumulation vii during the earlier stages of seed development, was implied by the observation that dehydrin-like proteins were induced after two weeks of development in cowpea plants subjected to stress during the vegetative phase. In addition, the exogenous application of ABA delayed radicle protrusion; this was associated with a delay in the disappearance of LEA proteins and is suggestive of a relationship between LEA protein accumulation and the acquisition of desiccation tolerance. The study has demonstrated that image analysis can objectively discriminate seed coat colour variation in cowpea. Dark coloured seeds in general performed better than light coloured seeds; however seed coat colour was not always associated with better performance. A newly developed Aging Stress Differential Index (ASDI) has been used in this study to demonstrate a link between seed coat colour and sensitivity to water stress. The ASDI correlated well with the observations relating stress tolerance to stachyose accumulation. The skewed distribution patterns in individual electrical conductivity and the presence of extreme values may have implications with respect to the suitability of using standard statistical analyses which compare mean values to evaluate such data. In addition variation in individual electrical conductivity may also be influenced by cultivar differences and the chemical composition of the seed coat. Therefore associations between seed coat colour and electrical conductivity as a measure of performance should be treated with caution. The AA test does reflect changes in seed vigour, however ranked electrical conductivity values after AA did not consistently reflect differences in seed performance between cultivars and sites, and they did not correlate well with other aspects of performance. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2007.
5

Breeding cowpea (Vigna unguiculata (L.) walp.) for improved drought tolerance in Mozambique

Chiulele, Rogério Marcos. January 2010 (has links)
Cowpea yields in Mozambique can be increased through breeding farmers’ accepted cultivars with drought tolerance and stability across environments. A study was conducted in the southern region of Mozambique to: (1) determine farmers perceptions on major constraints limiting cowpea production and identify preferences regarding cultivars and traits, (2) determine the variability of selected cowpea germplasm for drought tolerance, (3) determine the gene action controlling drought tolerance, yield and yield components in cowpea, and (4) assess the genotype × environment interaction and yield stability of cowpea genotypes under drought-stressed and non-stressed conditions. The study on farmers’ perceptions about the major constraints limiting cowpea production and preferences regarding cowpea cultivars and traits established that cowpea was an important crop, cultivated for its grain, leaves and fresh pods for household consumption and the market. The study revealed that cowpea grain and leaves were equally important across the three districts in the study. Differences in accessibility to markets between districts influenced the ranking of grain and leaves among districts. Grain was more important in Bilene and Chibuto districts which are situated far from the major urban centre, Maputo, while leaves were more important in Boane district which is near the major market of Maputo. Fresh pods were important in Bilene district which is situated along the major highway connecting Maputo and other provinces. Drought was the most important production constraint followed by aphids, bruchids and viral diseases. The criteria used by farmers to select cowpea varieties included high grain and leaf yield, large seed size, earliness, smoothness of the testa and potential marketability of the variety. The implication of this study is that different types of varieties need to be developed for different areas. Dual-purpose or grain-type varieties need to be developed for areas situated far away from the major markets while varieties for leaf production need to be bred for areas near major markets. During the breeding process, a selection index needs to be adopted whereby drought tolerance, high grain and leaf yield, large seed size, smooth testa, earliness, aphids and bruchids resistance should be integrated as components of the index. High grain yield should receive high weight for varieties developed for areas located far from major markets while high leaf yield would receive high weight for varieties developed for areas located near major markets. The study on variability of cowpea germplasm collections for drought tolerance revealed wide genotypic variability among the tested germplasm. Biplot displays indicated that the genotypes could be grouped into four categories according to their drought tolerance and yielding ability as indicated below: high yielding-drought tolerant (group A), high yielding-drought susceptible (group B), low yielding-drought tolerant (group C), and low yielding-drought susceptible (group D). Examples of high yielding-drought tolerant genotypes were Sh-50, UC-524B, INIA-24, INIA-120, IT96D-610 and Tete-2. Stress tolerance index was the best criterion for assessing genotypes for variability in drought tolerance because it enabled the identification of high yielding and drought tolerant genotypes (group A). The assessment on gene action controlling drought tolerance (stay-green), yield and components indicated that both additive and non-additive effects were involved in controlling all of these traits. Additive gene action was more important than non-additive gene affects in controlling stay-green, days to flowering, number of pods per plant, number of seeds per pod and hundred seed weight. Under no-stress conditions, additive gene action was more important than non-additive gene action while under drought-stressed conditions, non-additive gene effects were more important than additive gene effects. Stay-green can easily be assessed visually in early segregating populations while yield and yield related traits cannot. Hence, selection for drought tolerance using the stay-green trait would be effective in early segregating generations while selection for yield and number of pods per plant would be effective in late segregating generations. Selection for yield could be conducted directly under no-stress conditions and indirectly using the number of pods per plant under drought stress conditions. Genotype INIA-41 would be the most desirable to use as a parent for drought tolerance and IT93K-503-1 would be the most desirable to use as a parent for drought tolerance and yield. The assessment on genotype × environment interaction and cowpea grain yield stability for forty-eight (48) cowpea genotypes grown under drought-stressed and non-stressed conditions indicated that cross-over genotype × environment interactions were present for yield indicating that genotypes responded differently to varying environmental conditions. Genotypes adapted to specific environmental conditions could be identified. Genotypes IT-18, INIA-51, INIA-51A and Nhavanca were adapted to non-stressed environments that were either drought stressed or non-stressed while VAR-11D was adapted to low yielding, stressful environments. Genotypes INIA-23A, INIA-81D, INIA-24, INIA-25, INIA-16 and INIA-76 were high yielding and stable while genotypes IT-18, INIA-51, INIA-51A, Nhavanca and VAR-11D were high yielding and unstable. Genotypes Bambey-21, INIA-36, INIA-12 and Monteiro were consistently low yielding and stable except INIA-12 that was consistently unstable. Chókwè was a high yielding environment and suitable for identifying high yielding genotypes but not ideal for selection because it was not representative of an average environment while Umbeluzi was low yielding and not ideal for selection. Overall, the study revealed that genetic improvement of drought tolerance and yield would be feasible. Potential parents for genetic improvement for yield and drought tolerance were identified. However, further studies for assessing yield stability of cowpea genotypes are necessary and could be achieved by including more seasons and sites to get a better understanding of the genotype × environment interaction and yield stability of cowpea in Mozambique. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.

Page generated in 0.1029 seconds