• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crack Analysis in Silicon Solar Cells

Echeverria Molina, Maria Ines 01 January 2012 (has links)
Solar cell business has been very critical and challenging since more efficient and low costs materials are required to decrease the costs and to increase the production yield for the amount of electrical energy converted from the Sun's energy. The silicon-based solar cell has proven to be the most efficient and cost-effective photovoltaic industrial device. However, the production cost of the solar cell increases due to the presence of cracks (internal as well as external) in the silicon wafer. The cracks of the wafer are monitored while fabricating the solar cell but the present monitoring techniques are not sufficient when trying to improve the manufacturing process of the solar cells. Attempts are made to understand the location of the cracks in single crystal and polycrystalline silicon solar cells, and analyze the impact of such cracks in the performance of the cell through Scanning Acoustic Microscopy (SAM) and Photoluminescence (PL) based techniques. The features of the solar cell based on single crystal and polycrystalline silicon through PL and SAM were investigated with focused ion beam (FIB) cross section and scanning electron microscopy (SEM). The results revealed that SAM could be a reliable method for visualization and understanding of cracks in the solar cells. The efficiency of a solar cell was calculated using the current (I) - voltage (V) characteristics before and after cracking of the cell. The efficiency reduction ranging from 3.69% to 14.73% for single crystal, and polycrystalline samples highlighted the importance of the use of crack monitoring techniques as well as imaging techniques. The aims of the research are to improve the manufacturing process of solar cells by locating and understanding the crack in single crystal and polycrystalline silicon based devices.
2

Crack depth measurement in reinforced concrete using ultrasonic techniques

Arne, Kevin C. 22 May 2014 (has links)
Concrete is the most widely used construction material in the world, so the assessment of damage in concrete is critical from the point of view of both safety and cost. Of particular interest are macro cracks that extend through the concrete cover of the reinforcement, which can potentially expose the reinforcement to corrosive elements. The high density of scatterers such as aggregate and voids in concrete makes quantitative imaging with coherent ultrasound difficult. As an alternative, this research focuses on diffuse energy based ultrasonic methods rather than coherent ultrasonic methods for crack depth assessment. Two types of ultrasonic measurements were made on real cracks formed under four point bending: one that focuses on time of flight measurements from an impactor; while the other uses the arrival time of maximum energy in a diffuse field excited by an impulsive load from a transducer. Each of these ultrasonic techniques is used to interrogate a macro crack in a concrete beam, and the results are compared to determine their accuracy and robustness. The actual crack depth is determined using direct surface measurements and a destructive dye-injected approach with drilled cores. The results suggest that the diffusion method, using a maximum energy approach, more accurately estimates the crack than visual inspection and impact echo methods, which overestimate the depth.
3

Nondestructive Evaluation of the Depth of Cracks in Concrete Plates Using Surface Waves

Yang, Yanjun January 2009 (has links)
Concrete structures can often be modeled as plates, for example, bridges, tunnel walls and pipes. Near-surface damage in concrete structures mostly takes the form of cracking. Surface-breaking cracks affect concrete properties and structural integrity; therefore, the nondestructive evaluation of crack depth is important for structural monitoring, strengthening and rehabilitation. On the other hand, material damping is a fundamental parameter for the dynamic analysis of material specimens and structures. Monitoring damping changes is useful for the assessment of material conditions and structural deterioration. The main objective of this research is to develop new methodologies for depth evaluation of surface-breaking cracks and the evaluation of damping in concrete plates. Nondestructive techniques based on wave propagation are useful because they are non-intrusive, efficient and cost effective. Previous studies for the depth evaluation of surface-breaking cracks in concrete have used diffracted compressional waves (P-waves). However, surface waves exhibit better properties for the characterization of near surface defects, because (a) surface waves dominate the surface response, they carry 67% of the wave propagation energy, and present lower geometrical attenuation because the propagating wave front is cylindrical; and (b) the penetration depth of Rayleigh waves (R-waves) depends on their frequency. Most of the R-wave energy concentrates at a depth of one-third of their wavelengths. The transmission of R-waves through a surface-breaking crack depends on the crack depth; this depth sensitivity is the basis for the so-called Fourier transmission coefficient (FTC) method. R-waves only exist in a half-space (one traction-free surface); whereas in the case of a plate (two traction-free surfaces), Lamb modes are generated. Fundamental Lamb modes behave like R-waves at high frequencies, because their wavelengths are small relative to the plate thickness. Lamb modes are not considered in the standard FTC method, and the FTC method is also affected by the selected spacing between receivers. The FTC calculation requires the use of an explicit time window for the identification of the arrival of surface waves, and the selection of a reliable frequency range. This research presents theoretical, numerical and experimental results. Theoretical aspects of Lamb modes are discussed, and a theoretical transfer function is derived, which can be used to study changes of Lamb modes in the time and frequency domains as a function of distance. The maximum amplitude of the wavelet transform varies with distance because of the dispersion of Lamb modes and the participation of higher Lamb modes in the response. Numerical simulations are conducted to study the wave propagation of Lamb modes through a surface-breaking crack with different depths. The surface response is found to be dominated by the fundamental Lamb mode. Using the 2D Fourier transform, the incident, transmitted and reflected fundamental Lamb modes are extracted. A transmission ratio between the transmitted and incident modes is calculated, which is sensitive to crack depths (d) normalized to the wavelength (λ) in a range (d / λ) = 0.1 to 1/3. A new wavelet transmission coefficient (WTC) method for the depth evaluation of surface-breaking cracks in concrete is proposed to overcome the main limitations of the FTC method. The WTC method gives a global coefficient that is correlated with the crack depth, which does not require time windowing and the pre-selection of a frequency bandwidth. To reduce the effects of wave reflections, which are present in the FTC method because of the non-equal spacing configuration, a new equal spacing configuration is used in the WTC method. The effects of Lamb mode dispersion are also reduced. In laboratory tests, an ultrasonic transmitter with central frequency at 50kHz is used as a source; the 50kHz frequency is appropriate for the concrete plate tested (thickness 80mm), because the fundamental Lamb modes have converged to the Rayleigh wave mode. The new method has also been used in-situ at Hanson Pipe and Precast Inc., Cambridge, Ontario, Canada, and it shows potential for practical applications. In general, the evaluation of material damping is more difficult than the measurement of wave velocity; the dynamic response and attenuation of structural vibrations are predominantly controlled by damping, and the damping is typically evaluated using the modal analysis technique, which requires considerable efforts. The existing methods based on surface waves, use the Fourier transform to measure material damping; however, an explicit time window is required for the spectral ratio method to extract the arrival of surface wave; in addition, a slope of the spectral ratio varies for different frequency ranges, and thus a reliable frequency range needs to be determined. This research uses the wavelet transform to measure material damping in plates, where neither an explicit time window nor the pre-selection of a frequency bandwidth are required. The measured material damping represents an average damping for a frequency range determined by source. Both numerical and experimental results show good agreement and the potential for practical applications.
4

Nondestructive Evaluation of the Depth of Cracks in Concrete Plates Using Surface Waves

Yang, Yanjun January 2009 (has links)
Concrete structures can often be modeled as plates, for example, bridges, tunnel walls and pipes. Near-surface damage in concrete structures mostly takes the form of cracking. Surface-breaking cracks affect concrete properties and structural integrity; therefore, the nondestructive evaluation of crack depth is important for structural monitoring, strengthening and rehabilitation. On the other hand, material damping is a fundamental parameter for the dynamic analysis of material specimens and structures. Monitoring damping changes is useful for the assessment of material conditions and structural deterioration. The main objective of this research is to develop new methodologies for depth evaluation of surface-breaking cracks and the evaluation of damping in concrete plates. Nondestructive techniques based on wave propagation are useful because they are non-intrusive, efficient and cost effective. Previous studies for the depth evaluation of surface-breaking cracks in concrete have used diffracted compressional waves (P-waves). However, surface waves exhibit better properties for the characterization of near surface defects, because (a) surface waves dominate the surface response, they carry 67% of the wave propagation energy, and present lower geometrical attenuation because the propagating wave front is cylindrical; and (b) the penetration depth of Rayleigh waves (R-waves) depends on their frequency. Most of the R-wave energy concentrates at a depth of one-third of their wavelengths. The transmission of R-waves through a surface-breaking crack depends on the crack depth; this depth sensitivity is the basis for the so-called Fourier transmission coefficient (FTC) method. R-waves only exist in a half-space (one traction-free surface); whereas in the case of a plate (two traction-free surfaces), Lamb modes are generated. Fundamental Lamb modes behave like R-waves at high frequencies, because their wavelengths are small relative to the plate thickness. Lamb modes are not considered in the standard FTC method, and the FTC method is also affected by the selected spacing between receivers. The FTC calculation requires the use of an explicit time window for the identification of the arrival of surface waves, and the selection of a reliable frequency range. This research presents theoretical, numerical and experimental results. Theoretical aspects of Lamb modes are discussed, and a theoretical transfer function is derived, which can be used to study changes of Lamb modes in the time and frequency domains as a function of distance. The maximum amplitude of the wavelet transform varies with distance because of the dispersion of Lamb modes and the participation of higher Lamb modes in the response. Numerical simulations are conducted to study the wave propagation of Lamb modes through a surface-breaking crack with different depths. The surface response is found to be dominated by the fundamental Lamb mode. Using the 2D Fourier transform, the incident, transmitted and reflected fundamental Lamb modes are extracted. A transmission ratio between the transmitted and incident modes is calculated, which is sensitive to crack depths (d) normalized to the wavelength (λ) in a range (d / λ) = 0.1 to 1/3. A new wavelet transmission coefficient (WTC) method for the depth evaluation of surface-breaking cracks in concrete is proposed to overcome the main limitations of the FTC method. The WTC method gives a global coefficient that is correlated with the crack depth, which does not require time windowing and the pre-selection of a frequency bandwidth. To reduce the effects of wave reflections, which are present in the FTC method because of the non-equal spacing configuration, a new equal spacing configuration is used in the WTC method. The effects of Lamb mode dispersion are also reduced. In laboratory tests, an ultrasonic transmitter with central frequency at 50kHz is used as a source; the 50kHz frequency is appropriate for the concrete plate tested (thickness 80mm), because the fundamental Lamb modes have converged to the Rayleigh wave mode. The new method has also been used in-situ at Hanson Pipe and Precast Inc., Cambridge, Ontario, Canada, and it shows potential for practical applications. In general, the evaluation of material damping is more difficult than the measurement of wave velocity; the dynamic response and attenuation of structural vibrations are predominantly controlled by damping, and the damping is typically evaluated using the modal analysis technique, which requires considerable efforts. The existing methods based on surface waves, use the Fourier transform to measure material damping; however, an explicit time window is required for the spectral ratio method to extract the arrival of surface wave; in addition, a slope of the spectral ratio varies for different frequency ranges, and thus a reliable frequency range needs to be determined. This research uses the wavelet transform to measure material damping in plates, where neither an explicit time window nor the pre-selection of a frequency bandwidth are required. The measured material damping represents an average damping for a frequency range determined by source. Both numerical and experimental results show good agreement and the potential for practical applications.
5

Evaluation of Crack Depth Meter - An investigation of the crack depth meters possibilities and limitations for commonly occurring damage mechanisms / Utvärdering av Sprickdjupsmätare - En undersökning av sprickdjupsmätarnas möjligheter och begränsningar för vanligt förekommande skademekanismer

Norberg, Alfred January 2023 (has links)
In this master thesis, the accuracy of the crack depth meter RMG 4015 was evaluated for different types of cracks with various damage mechanisms. In total, 61 crack depth measurements were conducted with the crack depth meter on 56 cracks which were located in the 23 different test pieces supplied by Kiwa. The measured crack depths were then compared to the true crack depths, which were determined by cutting the test pieces and measuring directly on the cross-sections of the cracks using a light optical microscope. The results of the comparison showed that the RMG 4015, which uses potential drop techniques, was very accurate at measuring both strain induced and alkaline stress corrosion cracks. However, the results also showed that the crack depth meter underestimates chloride induced stress corrosion cracks, corrosion fatigue cracks and stress corrosion cracks/hydrogen embrittlement cracks at varying degrees. Therefore, the main recommendation for Kiwa is to switch the RMG 4015 to a crack depth meter that uses ultrasonic techniques instead. The master thesis also explored the possibilities to improve an FE model produced by Kiwa in a previous project which involved an analysis of a cracked component. The present crack depth measure program included a test piece from this component. The stress distribution in the original model did not represent the cracks found in the real structure and it was suspected to be the result of some boundary conditions not corresponding to those acting in the actual pipe system. Some adjustments to the boundary conditions and contact regions were made and a new improved model with a better representing stress distribution was found. / I detta examensarbete utvärderades noggrannheten hos sprickdjupsmätaren RMG 4015 för olika typer av sprickor med olika skademekanismer. Totalt utfördes 61 sprickdjupsmätningar med sprickdjupsmätaren på 56 sprickor i 23 olika provbitar som tillhandahölls av Kiwa. De uppmätta sprickdjupen jämfördes sedan med de verkliga sprickdjupen, som bestämdes genom att provbitarna skars upp och mätningarna utfördes direkt på sprickornas tvärsnitt med hjälp av ett optiskt ljusmikroskop. Resultaten av jämförelsen visade att RMG 4015, som använder sig av potentialfallstekniker, var mycket noggrann vid mätning av både töjningsinducerade och alkaliska spänningskorrosionssprickor. Resultaten visade dock också att sprickdjupsmätaren underskattar kloridinducerade spänningskorrosionssprickor, korrosionsutmattningssprickor och spänningskorrosionssprickor/väteförsprödningssprickor i varierande grad. Den viktigaste rekommendationen till Kiwa är därför att ersätta RMG 4015 med en sprickdjupsmätare som istället använder ultraljudsteknik. I examensarbetet undersöktes också möjligheterna att förbättra en FE-modell som Kiwa tagit fram i ett tidigare projekt som omfattade en analys av en sprucken komponent. En provbit från denna komponent ingick i det nuvarande programmet för sprickdjupsmätning. Spänningsfördelningen i den ursprungliga modellen representerade inte de sprickor som fanns i den verkliga strukturen och det misstänktes vara resultatet av vissa randvillkor som inte motsvarade de som verkar i det verkliga rörsystemet. Vissa justeringar av randvillkoren och kontaktytorna gjordes, och en ny förbättrad modell med en bättre representativ spänningsfördelning hittades.

Page generated in 0.063 seconds