• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nondestructive Evaluation of the Depth of Cracks in Concrete Plates Using Surface Waves

Yang, Yanjun January 2009 (has links)
Concrete structures can often be modeled as plates, for example, bridges, tunnel walls and pipes. Near-surface damage in concrete structures mostly takes the form of cracking. Surface-breaking cracks affect concrete properties and structural integrity; therefore, the nondestructive evaluation of crack depth is important for structural monitoring, strengthening and rehabilitation. On the other hand, material damping is a fundamental parameter for the dynamic analysis of material specimens and structures. Monitoring damping changes is useful for the assessment of material conditions and structural deterioration. The main objective of this research is to develop new methodologies for depth evaluation of surface-breaking cracks and the evaluation of damping in concrete plates. Nondestructive techniques based on wave propagation are useful because they are non-intrusive, efficient and cost effective. Previous studies for the depth evaluation of surface-breaking cracks in concrete have used diffracted compressional waves (P-waves). However, surface waves exhibit better properties for the characterization of near surface defects, because (a) surface waves dominate the surface response, they carry 67% of the wave propagation energy, and present lower geometrical attenuation because the propagating wave front is cylindrical; and (b) the penetration depth of Rayleigh waves (R-waves) depends on their frequency. Most of the R-wave energy concentrates at a depth of one-third of their wavelengths. The transmission of R-waves through a surface-breaking crack depends on the crack depth; this depth sensitivity is the basis for the so-called Fourier transmission coefficient (FTC) method. R-waves only exist in a half-space (one traction-free surface); whereas in the case of a plate (two traction-free surfaces), Lamb modes are generated. Fundamental Lamb modes behave like R-waves at high frequencies, because their wavelengths are small relative to the plate thickness. Lamb modes are not considered in the standard FTC method, and the FTC method is also affected by the selected spacing between receivers. The FTC calculation requires the use of an explicit time window for the identification of the arrival of surface waves, and the selection of a reliable frequency range. This research presents theoretical, numerical and experimental results. Theoretical aspects of Lamb modes are discussed, and a theoretical transfer function is derived, which can be used to study changes of Lamb modes in the time and frequency domains as a function of distance. The maximum amplitude of the wavelet transform varies with distance because of the dispersion of Lamb modes and the participation of higher Lamb modes in the response. Numerical simulations are conducted to study the wave propagation of Lamb modes through a surface-breaking crack with different depths. The surface response is found to be dominated by the fundamental Lamb mode. Using the 2D Fourier transform, the incident, transmitted and reflected fundamental Lamb modes are extracted. A transmission ratio between the transmitted and incident modes is calculated, which is sensitive to crack depths (d) normalized to the wavelength (λ) in a range (d / λ) = 0.1 to 1/3. A new wavelet transmission coefficient (WTC) method for the depth evaluation of surface-breaking cracks in concrete is proposed to overcome the main limitations of the FTC method. The WTC method gives a global coefficient that is correlated with the crack depth, which does not require time windowing and the pre-selection of a frequency bandwidth. To reduce the effects of wave reflections, which are present in the FTC method because of the non-equal spacing configuration, a new equal spacing configuration is used in the WTC method. The effects of Lamb mode dispersion are also reduced. In laboratory tests, an ultrasonic transmitter with central frequency at 50kHz is used as a source; the 50kHz frequency is appropriate for the concrete plate tested (thickness 80mm), because the fundamental Lamb modes have converged to the Rayleigh wave mode. The new method has also been used in-situ at Hanson Pipe and Precast Inc., Cambridge, Ontario, Canada, and it shows potential for practical applications. In general, the evaluation of material damping is more difficult than the measurement of wave velocity; the dynamic response and attenuation of structural vibrations are predominantly controlled by damping, and the damping is typically evaluated using the modal analysis technique, which requires considerable efforts. The existing methods based on surface waves, use the Fourier transform to measure material damping; however, an explicit time window is required for the spectral ratio method to extract the arrival of surface wave; in addition, a slope of the spectral ratio varies for different frequency ranges, and thus a reliable frequency range needs to be determined. This research uses the wavelet transform to measure material damping in plates, where neither an explicit time window nor the pre-selection of a frequency bandwidth are required. The measured material damping represents an average damping for a frequency range determined by source. Both numerical and experimental results show good agreement and the potential for practical applications.
2

Nondestructive Evaluation of the Depth of Cracks in Concrete Plates Using Surface Waves

Yang, Yanjun January 2009 (has links)
Concrete structures can often be modeled as plates, for example, bridges, tunnel walls and pipes. Near-surface damage in concrete structures mostly takes the form of cracking. Surface-breaking cracks affect concrete properties and structural integrity; therefore, the nondestructive evaluation of crack depth is important for structural monitoring, strengthening and rehabilitation. On the other hand, material damping is a fundamental parameter for the dynamic analysis of material specimens and structures. Monitoring damping changes is useful for the assessment of material conditions and structural deterioration. The main objective of this research is to develop new methodologies for depth evaluation of surface-breaking cracks and the evaluation of damping in concrete plates. Nondestructive techniques based on wave propagation are useful because they are non-intrusive, efficient and cost effective. Previous studies for the depth evaluation of surface-breaking cracks in concrete have used diffracted compressional waves (P-waves). However, surface waves exhibit better properties for the characterization of near surface defects, because (a) surface waves dominate the surface response, they carry 67% of the wave propagation energy, and present lower geometrical attenuation because the propagating wave front is cylindrical; and (b) the penetration depth of Rayleigh waves (R-waves) depends on their frequency. Most of the R-wave energy concentrates at a depth of one-third of their wavelengths. The transmission of R-waves through a surface-breaking crack depends on the crack depth; this depth sensitivity is the basis for the so-called Fourier transmission coefficient (FTC) method. R-waves only exist in a half-space (one traction-free surface); whereas in the case of a plate (two traction-free surfaces), Lamb modes are generated. Fundamental Lamb modes behave like R-waves at high frequencies, because their wavelengths are small relative to the plate thickness. Lamb modes are not considered in the standard FTC method, and the FTC method is also affected by the selected spacing between receivers. The FTC calculation requires the use of an explicit time window for the identification of the arrival of surface waves, and the selection of a reliable frequency range. This research presents theoretical, numerical and experimental results. Theoretical aspects of Lamb modes are discussed, and a theoretical transfer function is derived, which can be used to study changes of Lamb modes in the time and frequency domains as a function of distance. The maximum amplitude of the wavelet transform varies with distance because of the dispersion of Lamb modes and the participation of higher Lamb modes in the response. Numerical simulations are conducted to study the wave propagation of Lamb modes through a surface-breaking crack with different depths. The surface response is found to be dominated by the fundamental Lamb mode. Using the 2D Fourier transform, the incident, transmitted and reflected fundamental Lamb modes are extracted. A transmission ratio between the transmitted and incident modes is calculated, which is sensitive to crack depths (d) normalized to the wavelength (λ) in a range (d / λ) = 0.1 to 1/3. A new wavelet transmission coefficient (WTC) method for the depth evaluation of surface-breaking cracks in concrete is proposed to overcome the main limitations of the FTC method. The WTC method gives a global coefficient that is correlated with the crack depth, which does not require time windowing and the pre-selection of a frequency bandwidth. To reduce the effects of wave reflections, which are present in the FTC method because of the non-equal spacing configuration, a new equal spacing configuration is used in the WTC method. The effects of Lamb mode dispersion are also reduced. In laboratory tests, an ultrasonic transmitter with central frequency at 50kHz is used as a source; the 50kHz frequency is appropriate for the concrete plate tested (thickness 80mm), because the fundamental Lamb modes have converged to the Rayleigh wave mode. The new method has also been used in-situ at Hanson Pipe and Precast Inc., Cambridge, Ontario, Canada, and it shows potential for practical applications. In general, the evaluation of material damping is more difficult than the measurement of wave velocity; the dynamic response and attenuation of structural vibrations are predominantly controlled by damping, and the damping is typically evaluated using the modal analysis technique, which requires considerable efforts. The existing methods based on surface waves, use the Fourier transform to measure material damping; however, an explicit time window is required for the spectral ratio method to extract the arrival of surface wave; in addition, a slope of the spectral ratio varies for different frequency ranges, and thus a reliable frequency range needs to be determined. This research uses the wavelet transform to measure material damping in plates, where neither an explicit time window nor the pre-selection of a frequency bandwidth are required. The measured material damping represents an average damping for a frequency range determined by source. Both numerical and experimental results show good agreement and the potential for practical applications.
3

Réponse élastodynamique d'une plaque stratifiée anisotrope : approches comparées. : Vers le développement de méthodes hybrides. / Elastodynamic response of a layered anisotropic plate : comparative approaches. : Towards the development of hybrid methods

Mora, Pierric 17 December 2015 (has links)
Cette thèse traite de la résolution du problème direct de propagation d'un champ élastodynamique rayonné par une source dans un milieu stratifié anisotrope. Le contexte applicatif visé est le contrôle non destructif par ondes ultrasonores guidées de plaques de matériaux composites. Aux basses fréquences, ces matériaux sont assimilables à des milieux homogènes, anisotropes et dissipatifs. Deux approches causales sont étudiées et mises en oeuvre pour résoudre l'équation d'onde, et leur intérêt vis-à-vis de la méthode modale harmonique - la plus couramment employée dans ce domaine applicatif - est discuté. L'une des méthodes est modale et est formulée directement dans le domaine temporel. Elle permet de traiter facilement l'anisotropie, y compris en 3D, mais souffre des écueils classiques concernant le régime non-établi ou le cas du guide ouvert. L'autre approche est une formulation dans le domaine de Laplace de la méthode dite par ondes partielles. Elle présente l'intérêt d'être extrêmement polyvalente tout en conduisant à des coûts numériques tout à fait raisonnables. Dans un second temps, la possibilité d'exploiter ces deux méthodes pour résoudre des problèmes de diffraction par des défauts est étudiée. Une approche par éléments finis de frontière basée sur la méthode par ondes partielles est considérée. Elle permet de traiter efficacement le cas de défauts plans. L'extension à des défauts plus généraux est brièvement discutée. / This work adresses the direct problem of the propagation of an elastodynamic field radiated by a source in an anisotropic layered medium. Applications concern non destructive evaluation of composite plates by ultrasonic guided waves. In the lower frequencies, these materials can be modeled as homogeneous, anisotropic and dissipative media. Two causal approaches are studied and developped to solve the wave equation, and their interest is discussed regarding to the widely used harmonic modal method. One of these methods is modal, and is formulated directly in the time domain. It allows to deal easily with anisotropy, even in 3D ; however it also suffers classical shortcomings such as the high cost of the unestablished regime or the difficulty to deal with open waveguides. The other method is a formulation of the so-called partial-waves method in the Laplace domain. Its attractiveness relies in its versatility and in the fact that computational costs can be very acceptable. In a second time, we consider using both methods to solve problems of diffraction by defects. A boundary element method based on the partial-waves approach is developped and leads to solve very efficiently the case of a planar defect. The possibility of treating more general defects is briefly discussed.
4

Caractérisation non linéaire de l'endommagement des matériaux composites par ondes guidées / Nonlinear characterization of damaged composite plates using guided waves

Baccouche, Yousra 30 April 2013 (has links)
La sensibilité des méthodes acoustiques non-linéaires à la présence ainsi qu’à l’évolution des microendommagements a été prouvée dans différents travaux sur une large gamme de matériaux. Parmi les méthodes appliquées figure la résonance non-linéaire dont la sensibilité à l’endommagement est prouvée pour un seul mode de vibration à travers la décroissance de la fréquence de résonance ƒ et celle facteur de qualité Q en fonction de la déformation dynamique. Ainsi, les paramètres non-linéaires hystérétiques (NLH) ƒ et Q ne sont connus que dans une gamme fréquentielle réduite. Le présent travail de thèse propose l’utilisation d’une approche originale permettant de suivre la dispersion des paramètres ƒ et Q à travers la génération d’ondes guidées dans des plaques en composites à matrices polymère et métallique. De plus, l’approche en ondes guidées a également permis de définir un nouveau paramètre NLH V liée au mode de Lamb A0. L’un des résultats originaux de ce travail est que le rapport V/ƒ s’avère constant (~ 2) quelle que soit la fréquence considérée et ce pour les deux types de composites. Ce résultat prometteur montre pour la première fois qu’il est possible de généraliser le comportement NLH dans les structures en plaques moyennant le formalisme de Lamb. Finalement, le travail de thèse s’est également intéressé à la définition d’un nouveau paramètre NLH large bande, noté ∆S, afin de suivre la sensibilité du spectre de vibration à l’endommagement. Les mesures ont montré que ∆S pouvait se distinguer de par une réponse pouvant être nonlinéaire dès les premiers niveaux d’excitation ou à partir d’un niveau seuil. Ce résultat très prometteur montre à quel point il est important d’élargir le domaine fréquentiel pour une détection précoce de l’endommagement et ce même à des niveaux d’excitation où l’on croyait le matériau se comporter de façon linéaire. / Sensitivity of non-linear acoustics techniques to the presence and evolution of micro-damage has been proven on a large scale of materials. In particular, different works showed the use of the nonlinear resonance as a reliable method to characterise damage in heterogeneous materials through the drop of the resonance frequency ƒ and the quality factor Q as a function of the dynamic strain. Therefore, nonlinear hysteretic parameters (NLH) ƒ and Q have only been determined in a narrow frequency band. The present work develops an original approach, which allows to follow the frequency dispersion of ƒ and Q by using guided waves propagating in polymer and metal based composite plates. Furthermore, the guided wave approach made possible the definition of a new NLH parameter V through the A0 Lamb mode. One of the original results is that the ratio V/ƒ remains constant for both materials (~2) despite the considered frequency. This encouraging result allows for the first time to show that it is possible to generalise the NLH behaviour in the case of a plate-like structures using the Lamb formalism. Finally, this present PhD thesis defines a new large frequency band NLH parameter ∆S in order to follow the sensitivity of the vibration spectrum to the present damage. The performed experiments have shown that ∆S can be nonlinear either at the very first excitation levels or at a given threshold. This encouraging experimental result shows that there is a real interest in broadening the frequency domain in order to better understand the changes that occur in heterogeneous materials when the dynamic strain is increased.

Page generated in 0.0664 seconds