• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of Indicated– and Load– Torque from Engine Speed Variations

Bengtsson, Fredrik January 2006 (has links)
<p>The importance of control systems and diagnostics in vehicles are increasing and has resulted in several new methods to calculate better control signals. The performance can be increased by calculating these signals close to optimum, but that also require more and precise information regarding the system.</p><p>One of the wanted control signals are the crankshaft torque and the thesis presents two different methods to estimate this torque using engine speed variations. These methods are Modeling of the Crankshaft and Frequency Analysis. The methods are evaluated and implemented on for a four cylinder SAAB engine. Measurements are made in an engine test cell as well as a vehicle.</p><p>The results show that the Modeling of the Crankshaft method does not produce a satisfying estimation, with a difference of about 200% between estimated and calculated torque. On the other hand, the Frequency Analysis provides an accurate estimation of both mean and instantaneous indicated torque, with a maximum difference of ±20% between estimated and calculated torque.</p>
2

Estimation of Indicated– and Load– Torque from Engine Speed Variations

Bengtsson, Fredrik January 2006 (has links)
The importance of control systems and diagnostics in vehicles are increasing and has resulted in several new methods to calculate better control signals. The performance can be increased by calculating these signals close to optimum, but that also require more and precise information regarding the system. One of the wanted control signals are the crankshaft torque and the thesis presents two different methods to estimate this torque using engine speed variations. These methods are Modeling of the Crankshaft and Frequency Analysis. The methods are evaluated and implemented on for a four cylinder SAAB engine. Measurements are made in an engine test cell as well as a vehicle. The results show that the Modeling of the Crankshaft method does not produce a satisfying estimation, with a difference of about 200% between estimated and calculated torque. On the other hand, the Frequency Analysis provides an accurate estimation of both mean and instantaneous indicated torque, with a maximum difference of ±20% between estimated and calculated torque.

Page generated in 0.0348 seconds