• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CREDIT CARD FRAUD DETECTION (Machine learning algorithms) / Kreditkortsbedrägeri med användning av maskininlärningsalgoritmer

Westerlund, Fredrik January 2017 (has links)
Credit card fraud is a field with perpetrators performing illegal actions that may affect other individuals or companies negatively. For instance, a criminalcan steal credit card information from an account holder and then conduct fraudulent transactions. The activities are a potential contributory factor to how illegal organizations such as terrorists and drug traffickers support themselves financially. Within the machine learning area, there are several methods that possess the ability to detect credit card fraud transactions; supervised learning and unsupervised learning algorithms. This essay investigates the supervised approach, where two algorithms (Hellinger Distance Decision Tree (HDDT) and Random Forest) are evaluated on a real life dataset of 284,807 transactions. Under those circumstances, the main purpose is to develop a “well-functioning” model with a reasonable capacity to categorize transactions as fraudulent or legit. As the data is heavily unbalanced, reducing the false-positive rate is also an important part when conducting research in the chosen area. In conclusion, evaluated algorithms present a fairly similar outcome, where both models have the capability to distinguish the classes from each other. However, the Random Forest approach has a better performance than HDDT in all measures of interest.
2

Explainable AI methods for credit card fraud detection : Evaluation of LIME and SHAP through a User Study

Ji, Yingchao January 2021 (has links)
In the past few years, Artificial Intelligence (AI) has evolved into a powerful tool applied in multi-disciplinary fields to resolve sophisticated problems. As AI becomes more powerful and ubiquitous, oftentimes the AI methods also become opaque, which might lead to trust issues for the users of the AI systems as well as fail to meet the legal requirements of AI transparency. In this report, the possibility of making a credit-card fraud detection support system explainable to users is investigated through a quantitative survey. A publicly available credit card dataset was used. Deep Learning and Random Forest were the two Machine Learning (ML) methodsimplemented and applied on the credit card fraud dataset, and the performance of their results was evaluated in terms of their accuracy, recall, sufficiency, and F1 score. After that, two explainable AI (XAI) methods - SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations) were implemented and applied to the results obtained from these two ML methods. Finally, the XAI results were evaluated through a quantitative survey. The results from the survey revealed that the XAI explanations can slightly increase the users' impression of the system's ability to reason and LIME had a slight advantage over SHAP in terms of explainability. Further investigation of visualizing data pre-processing and the training process is suggested to offer deep explanations for users.

Page generated in 0.1309 seconds