• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extension of the ANSYS® creep and damage simulation capabilities

Altstadt, Eberhard, Mössner, Thomas January 2000 (has links)
The user programmable features (UPF) of the finite element code ANSYS® are used to generate a customized ANSYS-executable including a more general creep behaviour of materials and a damage module. The numerical approach for the creep behaviour is not restricted to a single creep law (e.g. strain hardening model) with parameters evaluated from a limited stress and temperature range. Instead of this strain rate - strain relations can be read from external creep data files for different temperature and stress levels. The damage module accumulates a damage measure based on the creep strain increment and plastic strain increment of the load step and the current fracture strains for creep and plasticity (depending on temperature and stress level). If the damage measure of an element exceeds a critical value this element is deactivated. Examples are given for illustration and verification of the new program modules.
2

Thermomechanical fatigue of Mar-M247: extension of a unified constitutive and life model to higher temperatures

Brindley, Kyle A. 22 May 2014 (has links)
The goal of this work is to establish a life prediction methodology for thermomechanical loading of the Ni-base superalloy Mar-M247 over a larger temperature range than previous work. The work presented in this thesis extends the predictive capability of the Sehitoglu-Boismier unified thermo-viscoplasticity constitutive model and thermomechanical life model from a maximum temperature of 871C to a maximum temperature of 1038C. The constitutive model, which is suitable for predicting stress-strain history under thermomechanical loading, is adapted and calibrated using the response from isothermal cyclic experiments conducted at temperatures from 500C to 1038C at different strain rates with and without dwells. In the constitutive model, the flow rule function and parameters as well as the temperature dependence of the evolution equation for kinematic hardening are established. In the elevated temperature regime, creep and stress relaxation are critical behaviors captured by the constitutive model. The life model accounts for fatigue, creep, and environmental-fatigue damage under both isothermal and thermomechanical fatigue. At elevated temperatures, the damage terms must be calibrated to account for thermally activated damage mechanisms which change with increasing temperature. At lower temperatures and higher strain rates, fatigue damage dominates life prediction, while at higher temperatures and slower strain rates, environmental-fatigue and creep damage dominate life prediction. Under thermomechanical loading, both environmental-fatigue and creep damage depend strongly on the relative phasing of the thermal and mechanical strain rates, with environmental-fatigue damage dominating during out-of-phase thermomechanical loading and creep damage dominating in-phase thermomechanical loading. The coarse-grained polycrystalline microstructure of the alloy studied causes a significant variation in the elastic response, which can be linked to the crystallographic orientation of the large grains. This variation in the elastic response presents difficulties for both the constitutive and life models, which depend upon the assumption of an isotropic material. The extreme effects of a large grained microstructure on the life predictions is demonstrated, and a suitable modeling framework is proposed to account for these effects in future work.

Page generated in 0.0369 seconds