• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermomechanical behavior of a directionally solidified nickel-base superalloys in the aged state

Kirka, Michael 08 June 2015 (has links)
Understanding the effects of aged microstructures on the thermomechanical fatigue (TMF) properties of nickel-base (Ni-base) superalloys remains unclear. Few experimental results are currently available in this area, and of the limited results available, some promote aged microstructures as beneficial, while others as detri- mental. The importance of these aged structures arises from the fact that when components used in the hot sections of gas turbine engines remain in service for ex- tended periods of time, the local temperature and stress provides the catalyst for the evolution of the microstructure. An experimental assessment of a negative misfit directionally solidified (DS) Ni- base superalloy was undertaken to characterize the aging kinetics and understand the influence of the TMF cycle temperature extremum, temperature-load phasing, mean strain, creep-fatigue, orientation effects, and microstructure on TMF fatigue crack initiation. To determine the effects of aging on the TMF response, the as-heat- treated alloy was artificially aged to three unique microstructures identified in the aging kinetics study. The experiments revealed that not all aged microstructures are detrimental to the fatigue life behavior. Specifically, when the γ′ precipitates age in a manner to align themselves parallel to the axis of the applied stress, an increase in the fatigue life over that of the as-heat-treated microstructure is observed for out-of-phase TMF with dwells. To extend the experimental understanding of the aged microstructures into ser- vice component design and life analysis, a temperature-dependent crystal viscoplas- ticity (CVP) constitutive model is developed to capture the sensitivity of the aged microstructure through embedding additional variables associated with the current state of the γ′ particles. As a result of the adaptations, the CVP model has the ability to describe the long-term aging effects of directional coarsening relevant to the analysis industrial gas turbine hot section components.
2

Extrapolation Techiques for Very Low Cycle Fatigue Behavior of a Ni-base Superalloy

Daubenspeck, Brian R. 01 January 2010 (has links)
This thesis describes innovative methods used to predict high-stress amplitude, low cycle fatigue (LCF) behavior of a material commonly used in gas turbine blade design with the absence of such data. A combination of extrapolation and estimation techniques from both prior and current studies has been explored with the goal of developing a method to accurately characterize such high-temperature fatigue of IN738LC, a dual-phase Ni-base superalloy. A method capable of predicting high-stress (or strain) amplitude fatigue from incessantly available low-stress amplitude, high cycle fatigue (HCF) would lower the costs of inspection, repair, and replacement on certain turbine components. Three sets of experimental data at different temperatures are used to evaluate and examine the validity of extrapolation methods such as anchor points and hysteresis energy trends. Stemming from extrapolation techniques developed earlier by Coffin, Manson, and Basquin, the techniques exercised in this study purely implement tensile test and HCF data with limited plastic strain during the estimation processes. A standard practice in engineering design necessitates mechanical testing closely resembling planned service conditions; for design against fatigue failure, HCF and tensile data are the experiments of choice. High stress amplitude data points approaching the ultimate strength of the material were added to the pre-existing HCF base data to achieve a full-range data set that could be used to test the legitimacy of the different prediction methods. While some methods proved to be useful for bounding estimates, others provided for superior estimation.
3

On the Creep Deformation Mechanisms of an Advanced Disk Ni-base Superalloy

Unocic, Raymond Robert 11 September 2008 (has links)
No description available.
4

Thermomechanical fatigue of Mar-M247: extension of a unified constitutive and life model to higher temperatures

Brindley, Kyle A. 22 May 2014 (has links)
The goal of this work is to establish a life prediction methodology for thermomechanical loading of the Ni-base superalloy Mar-M247 over a larger temperature range than previous work. The work presented in this thesis extends the predictive capability of the Sehitoglu-Boismier unified thermo-viscoplasticity constitutive model and thermomechanical life model from a maximum temperature of 871C to a maximum temperature of 1038C. The constitutive model, which is suitable for predicting stress-strain history under thermomechanical loading, is adapted and calibrated using the response from isothermal cyclic experiments conducted at temperatures from 500C to 1038C at different strain rates with and without dwells. In the constitutive model, the flow rule function and parameters as well as the temperature dependence of the evolution equation for kinematic hardening are established. In the elevated temperature regime, creep and stress relaxation are critical behaviors captured by the constitutive model. The life model accounts for fatigue, creep, and environmental-fatigue damage under both isothermal and thermomechanical fatigue. At elevated temperatures, the damage terms must be calibrated to account for thermally activated damage mechanisms which change with increasing temperature. At lower temperatures and higher strain rates, fatigue damage dominates life prediction, while at higher temperatures and slower strain rates, environmental-fatigue and creep damage dominate life prediction. Under thermomechanical loading, both environmental-fatigue and creep damage depend strongly on the relative phasing of the thermal and mechanical strain rates, with environmental-fatigue damage dominating during out-of-phase thermomechanical loading and creep damage dominating in-phase thermomechanical loading. The coarse-grained polycrystalline microstructure of the alloy studied causes a significant variation in the elastic response, which can be linked to the crystallographic orientation of the large grains. This variation in the elastic response presents difficulties for both the constitutive and life models, which depend upon the assumption of an isotropic material. The extreme effects of a large grained microstructure on the life predictions is demonstrated, and a suitable modeling framework is proposed to account for these effects in future work.
5

Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC

Kupkovits, Robert Anthony 08 April 2009 (has links)
Due to the extreme operating conditions present in the combustion sections of gas turbines, designers have relied heavily on specialized engineering materials. For blades, which must retain substantial strength and resistance to fatigue, creep, and corrosion at high temperatures, directionally-solidified (DS) nickel-base superalloys have been used extensively. Complex thermomechanical loading histories makes life prediction for such components difficult and subjective. Costly product inspection and refurbishment, as well as capital expense required in turbine forced outage situations, are significant drains on the resources of turbine producers. This places a premium on accurate endurance prediction as the foundation of viable long-term service contracts with customers. In working towards that end, this work characterizes the behavior of the blade material CM247LC DS subjected to a variety of in-phase (IP) and out-of phase (OP) loading cycles in the presence of notch stress concentrations. The material response to multiaxial notch effects, highly anisotropic material behavior, time-dependent deformation, and waveform and temperature cycle characteristics is presented. The active damage mechanisms influencing crack initiation are identified through extensive microscopy as a function of these parameters. This study consisted of an experimental phase as well as a numerical modeling phase. The first involved conducting high temperature thermomechanical fatigue (TMF) tests on both smooth and notched round-bar specimens to compile experimental results. Tests were conducted on longitudinal and transverse material grain orientations. Damage is characterized and conclusions drawn in light of fractography and microscopy. The influences of microstructure morphology and environmental effects on crack initiation are discussed. The modeling phase utilized various finite element (FE) simulations. These included an anisotropic-elastic model to capture the purely elastic notch response, and a continuum-based crystal visco-plastic model developed specifically to compute the material response of a DS Ni-base superalloy based on microstructure and orientation dependencies. These FE simulations were performed to predict and validate experimental results, as well as identify the manifestation of damage mechanisms resulting from thermomechanical fatigue. Finally, life predictions using simple and complex analytical modeling methods are discussed for predicting component life at various stages of the design process.
6

The effect of printing parameters on the deformation and microstructure of Inconel 718 : A study in pulsed laser and powder based directed energy deposition additive manufacturing

Repper, Elias January 2020 (has links)
Additive manufacturing has the power to redefine how we create components. In order to minimize removal of printed material, deformation must be kept a minimum. When deposition rate is increased during directed energy deposition so is the power requirement for melting the feedstock. This increases the residual stresses in the material and leads to more deformation. The deposition rate must be increased without introducing large deformation, if additive manufacturing is ever to be economical in many engineering fields. This study aims to explore if pulsing the laser can decrease deformation using a design of experiments approach. Other types of defects and microstructural changes are also evaluated. A total of 17 sets of parameters were used varying laser power, pulse frequency and the time fraction when the laser was powered on. The amount of powder added to a substrate was constant and the build geometry as similar as possible for all tests. Ultimately no conclusion could be drawn regarding pulsing parameters effect on deformation. It was found pulsing the laser lowered the powder efficiency drastically, which may have had a bigger effect on the experimental set up than anticipated. In a similar manner, no relation between pulsing parameters, defects and microstructure could be observed. / Additiv tillverkning ger oss möjligheten att tillverka komponenter på ett sätt som tidigare inte har varit möjligt. För att minimera efterföljande svarvning och fräsning av additivt tillverkade delar måste deformationen kontrolleras. När deponeringshastigheten ökar måste även sträckenergin ökas i direktenergideponeringsprocesser. Detta leder till höjda restspänningsnivåer i materialet och medför en större efterföljande deformation. Om additiv tillverkning i framtiden ska ha en chans att mäta sig ekonomiskt med konventionella metoder måste deponeringshastigheten öka för många applikationsområden. Denna studie använder Design of Experiments för att undersöka om en pulserande laser kan utnyttjas för att minska deformationen när metallpulver används som tillsats. Även andra typer av defekter och förändringar i mikrostruktur har utvärderats. Totalt undersöktes 17 olika parameteruppsättningar med varierande lasereffekt, pulsfrekvens och aktiv lasertid. Pulverdeponeringshastigheten hölls konstant mellan försöken och byggeometrierna var så lika som möjligt för alla tester. I slutändan kunde ingen slutsats dras när det gäller hur pulserande parametrar påverkar deformationen. Det visade sig att en pulserande parameter sänker pulvereffektiviteten drastiskt, vilket kan ha haft en större effekt på experimentets uppsättning än förutspått. På liknande sätt kunde inget säkert samband mellan pulserande parametrar, defekter och mikrostruktur observeras.
7

Thermomechanical fatigue crack formation in a single crystal Ni-base superalloy

Amaro, Robert L. 11 February 2011 (has links)
This research establishes a physics-based life determination model for the second generation single crystal superalloy PWA 1484 experiencing out-of-phase thermomechanical fatigue (TMF). The life model was developed as a result of a combination of critical mechanical tests, dominant damage characterization and utilization of well-established literature. The resulting life model improves life prediction over currently employed methods and provides for extrapolation into yet unutilized operating regimes. Particularly, the proposed deformation model accounts for the materials' coupled fatigue-environment-microstructure response to TMF loading. Because the proposed model is be based upon the underlying deformation physics, the model is robust enough to be easily modified for other single crystal superalloys having similar microstructure. Future use of this model for turbine life estimation calculations would be based upon the actual deformation experienced by the turbine blade, thereby enabling turbine maintenance scheduling based upon on a "retirement for a cause" life management scheme rather than the currently employed "safe-life" calculations. This advancement has the ability to greatly reduce maintenance costs to the turbine end-user since turbine blades would be removed from service for practical and justifiable reasons. Additionally this work will enable a rethinking of the warranty period, thereby decreasing warranty related replacements. Finally, this research provides a more thorough understanding of the deformation mechanisms present in loading situations that combine fatigue-environment-microstructure effects.
8

Rapid determination of temperature-dependent parameters for the crystal viscoplasticity model

Smith, Daniel J. 05 April 2011 (has links)
Thermomechanical fatigue life prediction is important in the design of Ni-base superalloy components in gas turbine engines and requires a stress-strain analysis for accurate results. Crystal viscoplasticity models are an ideal tool for this stress-strain analysis of Ni-base superalloys as they can capture not only the anomalous yielding behavior, but also the non-Schmid effect, the strain rate dependence, and the temperature dependence of typically large grained directionally-solidified and single crystal alloys. However, the model is difficult to calibrate even for isothermal conditions because of the interdependencies between parameters meant to capture different but similar phenomena at different length scales, many tied to a particular slip system. The need for the capacity to predict the material response over a large temperature range, which is critical for the simulation of hot section gas turbine components, causes the determination of parameters to be even more difficult since some parameters are highly temperature dependent. Rapid parameter determination techniques are therefore needed for temperature-dependent parameterizations so that the effort needed to calibrate the model is reduced to a reasonable level. Specific parameter determination protocols are established for a crystal viscoplasticity model implemented in ABAQUS through a user material subroutine. Parameters are grouped to reduce interdependencies and a hierarchical path through the groups and the parameters within each group is established. This dual level hierarchy creates a logical path for parameter determination which further reduces the interdependencies between parameters, allowing for rapid parameter determination. Next, experiments and protocols are established to rapidly provide data for calibration of the temperature-dependencies of the viscoplasticity. The amount of data needed to calibrate the crystal viscoplasticity model over a wide temperature range is excessively large due to the number of parameters that it contains which causes the amount of time spent in the experimentation phase of parameter determination to be excessively large. To avoid this lengthy experimentation phase each experiment is designed to contain as much relevant data as possible. This is accomplished through the inclusion of multiple strain rates in each experiment with strain ranges sufficiently large to clearly capture the inelastic response. The experimental and parameter determination protocols were exercised by calibrating the model to the directionally-solidified Ni-bas superalloy DS-CM247LC. The resulting calibration describes the material's behavior in multiple loading orientations and over a wide temperature range of 20 °C to 1050 °C. Several parametric studies illustrate the utility of the calibrated model.

Page generated in 0.0808 seconds