• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of process variables on the micromeritic and physicochemical properties of spray-dried microparticles, part II: physicochemical characterisation of spray-dried materials

Paluch, Krzysztof J., Tajber, L., Amaro, M.I., Corrigan, O.I., Healy, A.M. 24 May 2012 (has links)
Yes / Objectives  In this work we investigated the residual organic solvent content and physicochemical properties of spray-dried chlorothiazide sodium (CTZNa) and potassium (CTZK) salts. Methods  The powders were characterised by thermal, X-ray diffraction, infrared and dynamic vapour sorption (DVS) analyses. Solvent levels were investigated by Karl–Fischer titration and gas chromatography. Key findings  Spray-drying from water, methanol (MeOH) and mixes of MeOH and butyl acetate (BA) resulted in amorphous microparticles. The glass transition temperatures of CTZNa and CTZK were ∼192 and ∼159°C, respectively. These materials retained their amorphous nature when stored at 25°C in dry conditions for at least 6 months with no chemical decomposition observed. DVS determined the critical relative humidity of recrystallisation of CTZNa and CTZK to be 57% RH and 58% RH, respectively. The inlet temperature dependant oxidation of MeOH to formaldehyde was observed; the formaldehyde was seen to deposit within the amorphous matrix of spray-dried product. Spray-drying in the open blowing mode coupled with secondary drying resulted in a three-fold reduction in residual BA (below pharmacopoeial permitted daily exposure limit) compared to spray-drying in the closed mode. Conclusions  Experiments showed that recirculation of recovered drying gas increases the risk of deposition of residual solvents in the spray-dried product. / The Irish Research Council for Science and Engineering Technology (IRCSET), the Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number (07/SRC/B1158) and the Irish Drug Delivery Research Network, a Strategic Research Cluster grant (07/SRC/B1154) under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland.

Page generated in 0.1014 seconds