• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autour des déformations de Rankin-Cohen.

Yao, Yi-Jun 31 January 2007 (has links) (PDF)
Dans cette thèse on s'attache à étudier les crochets de Rankin-Cohen et les déformations correspondantes selon de différents points de vue. On présente d'un côté une nouvelle interprétation des déformations de Rankin-Cohen via la théorie de "Quantification par Deformations de Fedosov(en collaboration avec P. Bieliavsky et X. Tang). On parvient notamment à redémontrer un théorème de Connes-Moscovici sur la déformation formelle des algèbres sous l'action d'une algèbre de Hopf H1 munie d'une structure projective. De l'autre cote on donne dans Chapitre III une interprétation détaillée des crochets de Rankin-Cohen via la théorie de représentations unitaires de SL2(R) et en utilisant cette interprétation on étudie certaines propriétés des produits déformés, notamment l'unicité des produits construits par Cohen-Manin-Zagier et une propriété de séparation du produit d'Eholzer. Dans le dernier chapitre on donne une démonstration élémentaire de l'identité combinatoire qui est cruciale pour démontrer l'associativité dans l'approche de la question de déformations par Cohen-Manin-Zagier, Eholzer, et Connes-Moscovici.
2

Formes quasi-modulaires sur des groupes modulaires<br />co-compacts et restrictions des formes modulaires <br />de Hilbert aux courbes modulaires.

Ouled Azaiez, Najib 25 November 2005 (has links) (PDF)
On démontre un théorème de structure pour l'anneau des<br />formes quasi-modulaires $\widetilde{M}_*(\Gamma)$ gradué par<br />le poids, sur n'importe quel groupe discret et co-compact<br />$\Gamma \subset \rm{PSL}(2, \mathbb{R})$ : cet anneau s'avère<br />être toujours infiniment engendré. On calcule le nombre<br />de nouveaux générateurs en chaque poids. Le nombre en<br />question est fixe et est égal à $\dim_{\mathbb{C}} I<br />/ (I \cap \widetilde{I}^2)$ où $I$ et $\widetilde{I}$<br />désignent respectivement l'idéal des formes modulaires <br />sur $\Gamma$ (respectivement l'idéal des formes quasi-modulaires<br />sur $\Gamma$) en poids positifs. On construit des <br />anneaux $\widetilde{R}$ finiment engendrés en poids positif<br />et contenant les anneaux de formes quasi-modulaires sur<br />des groupes modulaires co-compacts. On étudie aussi<br />des restrictions des formes modulaires de Hilbert aux<br />courbes modulaires : on montre que l'espace engendré par<br />une suite de restrictions des formes modulaires de Hilbert<br />sur une courbe modulaire <br />est un sous-espace fermé par crochets de Rankin-Cohen de<br />l'espace des formes modulaires sur la courbe. <br />\vskip 2cm

Page generated in 0.0731 seconds