• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 23
  • Tagged with
  • 81
  • 81
  • 42
  • 20
  • 19
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Bambara groundnut response to controlled environment and planting date associated water stress.

Sinefu, Fikile. January 2011 (has links)
Bambara groundnut is a protein-rich legume, with food security potential in drought-prone regions. It has been grown for many centuries and has remained an important crop to most African subsistence farmers. However, despite its high nutritional status and yield advantages in poor soils, it remains one of the neglected crops by science. There have now been recent efforts to study underutilised crops, with the aim of promoting them as healthy alternatives for people facing resource and environmental challenges and to contribute to food security. In order to do this, there needs to be information that can be used to advise farmers on the agronomic aspects of producing the crop. The overall aim of the study was to evaluate the response of bambara groundnut landraces to drought under controlled environment and field conditions. Seeds were initially collected from subsistence farmers in Jozini, KwaZulu-Natal, and characterised into three seed lots distinguished by seed coat colour: red, white and brown. In the initial study (Chapter 2) seed quality of bambara groundnuts was evaluated. Seed lots were used for standard germination (SG) and cold test (CT). Seeds were germinated under two conditions, 25°C for 8 days (SG) and 4°C for 7 days followed by 8 days at 25°C (CT). Germination percentage, seedling size and mass were determined. Desiccation tolerance was evaluated by suspending 30 seeds of each seed lot over saturated salt solutions of NaCl, LiCl, KNO3 and H2O (control) for 0, 2, 4, 8, 24 and 48 hours. Five seeds were sampled at each interval and stored at -21°C for 7 days. Samples were ground and analysed for proline content. In addition, early establishment performance of bambara groundnut was evaluated under controlled environment conditions in seedling trays using two water regimes (Chapter 2). The experimental design had three factors: seed lot (colour), priming (NaCl, LiCl, KNO3, H2O and control) and water regimes [25% and 75% Field Capacity (F.C.)]. The experiment was replicated three times. Seedling emergence was determined daily for 21 days. Seedling height and leaf number were determined weekly for three weeks, thereafter, seedling leaf area, root and shoot mass (fresh and dry), root and shoot lengths and root to shoot ratio were also determined. Seedlings were later transplanted in 90 pots for a pot trial in order to evaluate growth responses of bambara groundnut to water stress; plant height, leaf number and yield components were determined (Chapter 3). Lastly, the use of planting date selection as a management strategy for managing the occurrence of water stress under field conditions was evaluated in field trials. The experimental design was a split-split-plot design with planting date as main factor (early, optimum and late), irrigation and rainfed as sub-main factor, and seed colour as sub-plots (brown, red and white) arranged in a randomised complete block design (RCBD), with three replications. There were three planting dates: 7 September (early planting), 24 November (optimum planting) and 19 January (late planting). Results from Chapter 2 showed that the brown seed lot had the highest germination across treatments, followed by red and white seeds, respectively. There were significant differences between seed lots (P < 0.05) and salt solutions (P < 0.05) with respect to proline content. Seed proline content increased from 0 to 8 hours and later declined; NaCl was associated with the highest proline accumulation. There were highly significant differences (P < 0.001) between seed colours, priming treatments and F.C., as well as their interaction, with respect to seedling emergence. White seeds had the highest emergence, followed by brown and red, respectively. Priming seeds improved their emergence compared to the control, with highest emergence being observed in seeds treated with LiCl. Priming also improved emergence under water stress; 25% F.C. had the highest emergence compared to 75% F.C. Results from Chapter 3 showed that, seeds primed with NaCl and KNO3 resulted in tallest plants with the highest number of leaves per plant. However, NaCl and KNO3 were also the most affected under water stress. Priming was shown to improve germination and early crop establishment of bambara groundnut landraces under water stress. However, yield per plant did not improve in response to either halo- or hydro-priming. Results from field trials showed that in terms of the measured plant growth parameters (plant height, leaf number and LAI), bambara groundnut landraces were sensitive water stress. Water stress decreased yield components, and hence yield. However, selection of planting dates was shown to be a useful management tool for managing water stress under water limited field conditions. Choice of planting date significantly affected both plant growth and yield. The optimum planting date resulted in the best crop growth for all measured plant growth parameters followed by late and early planting dates, respectively. Seed quality was shown to be associated with seed lot colour. Darker coloured (red and brown) seeds performed better than light (white) seeds with respect to germination. Priming was also shown to improve germination and early crop establishment of bambara groundnut landraces under water stress. However, yield per plant did not improve following priming. Growth of bambara groundnut landraces was shown to be sensitive to water stress. Water stress decreased yield components and hence yield under both controlled and field conditions. Choice of planting date significantly affected both plant growth and yield. The optimum planting date was shown to be the best performing planting date. The findings of this study suggest that bambara groundnut seed performance in terms of germination, stand establishment and productivity is associated with seed lot colour. Seed priming improves seed performance and enhances crop capacity to withstand water stress. If the optimum planting date for groundnuts (late spring to early summer) is missed, better crop performance and yield are obtained from late planting (late summer to early spring) compared with early planting (early spring). Bambara groundnut has a potential for production under water stress conditions in controlled and field environments. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
72

Yield, protein and oil content of selected groundnut cultivars grown at two locations in the Eastern Cape, South Africa.

Mbonwa, Thozamile Nzuzo. 23 September 2014 (has links)
The Eastern Cape Province of South Africa has climatic conditions which differ from region to region. The groundnut (Arachis hypogaea L.) cultivars, as it is the case with other crops, do not always perform equally well in the varying conditions. Abiotic stresses such as drought, extreme temperatures, and high soil acidity restrict plant growth. Lack of studies on adaptability of commercial groundnut cultivars in the Eastern Cape necessitated this study. Abiotic and biotic factors are not the only limiting factors: calcium availability in the soil is also a limiting factor in groundnut production. The aim of the study was to identify best suited cultivars for climatic conditions of Mthatha and Lusikisiki regions of the Eastern Cape. Two similar field experiments were conducted in the two locations with different climatic conditions. The results showed significant differences (P<0.05) in genotypes with respect to seed yield in both locations. Kwarts produced higher seed yield of 1155 kg ha-1 in Mthatha, while the same genotype produced low seed yield of 630 kg ha-1 in Lusikisiki location. In Lusikisiki the highest seed yield was recorded in Anel (936 kg ha-1) which produced low yield of 692 kg ha-1 in Mthatha. The genotypes that performed well in Mthatha in 2010/11 season included Kwarts, Nyanda, ICGV-SM 95714 and Mwenje. These genotypes were further used to investigate their response to calcium supplementation at flowering stage under conditions of Mthatha in the 2011/12 season. The results were significantly different for calcium absorption (P<0.05). Nyanda, Kwarts and Mwenje responded positively to calcium application at flowering stage producing relatively high yield of 153, 150 and 110 kg ha-1, respectively. Oil content was significantly increased by calcium application at flowering in Nyanda with 27.28% compared to 20.7% without Ca.
73

Field assessment of agronomic traits and in vitro acetolactate synthase characterisation of imazapyr herbicide tolerant sugarcane.

Maphalala, Kwanele Zakhele. January 2013 (has links)
Weed control is a major cost for growers in the sugarcane industry, especially for monocotyledonous species such as Cynodon and Rottboellia spp. The introduction of imazapyr-tolerant sugarcane would be advantageous as this herbicide has shown to be effective against the above-mentioned weeds but it also kills sugarcane. In a previous study in our laboratory, several sugarcane putative-mutant lines of variety N12 were generated by in vitro exposure of embryogenic callus to 16 mM ethyl methanesulfonate (EMS), followed by selection on imazapyr-containing medium. Tolerance to a low dose of imazapyr was confirmed in seven of those lines when the herbicide was applied (182 g a.i. ha-1) to 3 month-old plants in pots. The aim of the present study was to identify which of the seven herbicide mutant lines had agronomic characteristics at least equivalent to un-mutated N12. The objectives were to: 1) confirm tolerance to increased rate (312 and 625 g a.i. ha-1) of imazapyr in field plants; 2) measure the agronomic characteristics of these lines; 3) determine the effect of residual soil herbicide activity on germination of sugarcane setts. The seven mutant lines (Mut1-Mut7) and un-mutated N12 were clonally propagated in vitro by shoot multiplication followed by rooting and planted in three plots (untreated, sprayed with 312 or 625 g a.i. ha-1 imazapyr), in the field, in a randomized complete block design. In the untreated control plot there were no significant differences between the control and the mutant plants for agronomic traits (tiller number/plot, stalk height and stalk diameter) or estimated yield (kg/plot) after 10 months, indicating that the mutation process had no effect on general plant phenotype. In the sprayed (312 and 625 g a.i. ha-1) plots, Mut1, Mut4, Mut5, Mut6 and Mut7 plants showed tolerance to imazapyr as the leaves remained green compared with Mut2, Mut3 and N12 control plants, which displayed chlorotic leaves and eventually died in the plot sprayed with 625 g a.i. ha-1. Post-herbicide application, the yields of Mut5, Mut6 and Mut7 (52.33, 43.43 and 41.43 kg/plot, respectively) from the 312 g a.i. ha-1 plot were not significantly different from that of N12 control (53. 61 kg/plot) in the untreated plot. However, in the 312 g a.i. ha-1 plot, the yield and agronomic trait measurements of the untreated N12 control were significantly higher than those of the herbicide-susceptible plants Mut2 and Mut3. Similarly, in the 625 g a.i. ha-1 plot, the recorded yields for Mut4, Mut6 and Mut7 were 41.60, 43.44 and 36.30 kg/plot, respectively, indicating that their imazapyr tolerance and yield characteristics were comparable to the untreated N12 control. Imazapyr is conventionally applied to a fallow field 3-4 months prior to planting sugarcane as there is residual herbicide activity in the soil that suppresses sugarcane germination and growth. Therefore, in order to establish if the herbicide-tolerant mutants could germinate in iii an imazapyr-treated field, 3-budded setts of the mutant lines (Mut1-Mut7) and N12 control were planted in two plots, one unsprayed and one sprayed with 1254 g a.i. ha-1 imazapyr, 2 weeks previously. Germination was calculated after 3 weeks as the number of germinated setts in each plot/no. germinated setts in unsprayed plot x100. In the sprayed plot, the setts from Mut1, Mut4 and Mut6 displayed the highest germination percentages (60, 71 and 74%, respectively) compared with Mut2 (24%), Mut3 (46%), Mut5 (34%), Mut7 (40%) and the N12 control (12%). The in vitro acetolactate synthase (ALS) enzyme activity of 10 month-old plants from the untreated plot was assessed in the presence of 0-30 μM imazapyr to determine the herbicide concentration that inhibited ALS activity by 50% (IC50). The IC50 values for the mutated lines were between 3 and 30 μM, i.e. 1.5-8.8 times more tolerant to imazapyr than the N12 control plants, with Mut6 displaying the highest IC50 value (30 μM). On the basis of the results, it was concluded that Mut1, Mut6 and Mut7 lines were more tolerant to imazapyr than N12 and the other tested lines. Future work includes phenotypically assessing these lines for traits including sucrose content, fibre content, actual yield (tons cane ha-1) and altered pest and disease resistance. Once isolated and sequenced, the ALS gene conferring imazapyr tolerance can be used in genetic bombardment in the genetic modification approach as the gene of interest or as a selectable marker. In addition, the imazapyr-tolerant line can be used for commercial purposes in the field and as the parent plant in the breeding programme. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Durban, 2013.
74

Wild watermelon (Citrullus lanatus L.) landrace production in response to three seedling growth media and field planting dates.

Zulu, Ncebo Sibonelo. January 2010 (has links)
The challenge of food security requires that agricultural production is no longer based on a narrow genetic material present in conventional crops. Whereas conventional crops have been genetically improved to suit management practices of the modern farmer, the future farmer requires that there be access to a wide variety of genetic material for economic exploitation and to respond to the challenges of climate change in a sustainable fashion. This study was designed to learn about production of wild water melon [Citrullus lanatus (Thunb.) Matsumura and Nakai] from seed germination, seedling establishment and field crop production. The specific objectives of the study were (a) to determine the effect of water stress on three landraces of watermelon differing in seed colour and provenance during seedling establishment, (b) to determine the effect of planting date on crop growth and yield under field conditions, and (c) to relate proline accumulation to water stress in wild watermelon. Three seedlots, ‘B’, ‘DB’ and ‘VDB” were derived from seeds collected from subsistence farming communities of the Eastern Cape, and KwaZulu-Natal. Following one season of seed production in Pietermaritzburg, KwaZulu-Natal, seeds were tested for germination capacity, before seedlot response to water stress was determined in three substrates made of pine bark, a 1:1 mixture of fine sand and pine bark and fine sand only. The substrates were kept at 75% FC, 50% F.C and 25% F.C., to create varying levels of water regimes during 12 weeks of seedling growth in a glasshouse (16/21oC (day/night) and 60% RH). Leaf proline content was determined at seedling harvest. Crop production under field conditions occurred at one site with three planting dates late September 2008, November 2008 and January 2009, respectively. There were significant differences among seedlots with respect to seed quality and seedling yield, which consistently showed that B > VDB > DB. The differences in seedlots continued in the same order even in response to field conditions. Wild watermelon was responsive to water stress during seedling growth, but high water regimes compromised water use efficiency. Proline accumulation correlated with water stress. The best plant growth and yield under field conditions was obtained when planting occurred in September, followed by November and January plantings, respectively. Early planting was also associated with high crop growth rate and larger fruit size. It is concluded that despite being a desert crop, wild watermelon responds to water deficits during seedling growth. Results of field studies cannot be conclusively used to determine crop response to water stress, although they gave a good indication of crop response to different conditions of rainfall and temperature at the study site from September to March. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
75

Response of local wild mustard (Brassica species) landraces to water stress.

Mbatha, Thobile Precious. January 2010 (has links)
Wild mustard is an indigenous leafy vegetable. Its use is limited by a lack of knowledge of its agronomy. However, it is a rich source of nutrients and other minerals. Nowadays, the use of indigenous crops has been replaced by exotic crops. Climate change is affecting agricultural productivity. South Africa is a water scarce country with uneven rainfall distribution. Therefore, studies on water stress effects on plant growth were promoted by the Water Research Commission and the University of KwaZulu-Natal to understand plant responses to water stress for commercial and subsistence farming. The objective of the study was to characterise local wild mustard cultivars morphologically and physiologically with respect to production, and for the purposes of identifying their drought tolerance. Three experiments were conducted at the University of KwaZulu-Natal in order to evaluate the responses of local wild mustard cultivars to water stress. Seeds of wild mustard cultivars were characterised according to seed coat colour. Seed quality was determined by a standard germination test. Vigour was then tested using electrolyte conductivity. Seeds were sown in seedling trays under two water regimes of 25% field capacity (FC) and 75% (FC) on pine bark growing media. The experiment was terminated at 21 days when root and shoot lengths were measured. The effect of water stress on protein content and seedling growth parameters was determined. Soil was collected from the University of KwaZulu-Natal Research Farm for a pot trial. Seeds of wild mustard were sown in 81 pots, each filled with 2 kg of soil, under three water regimes (25% FC, 50% FC and 75% FC). Pots were maintained at the corresponding field capacity level by re-weighing the pots, three times a week. Measurements of plant height and leaf number were recorded weekly. The experiment was terminated at the flowering stage. At the end of the experiment, plant growth parameters (plant height, leaf area and number, dry and fresh mass) were measured in order to evaluate the effects of water stress at the vegetative stage. A field trial was conducted at the University of KwaZulu-Natal Ukulinga Research Farm in Pietermaritzburg. The experiment was conducted during the winter and spring of 2009. A completely randomised design was used for non-irrigated and irrigated (25 mm/week) trials. Emergence was measured as well as plant height and leaf number. Plant growth parameters were also measured at the end of the experiment. Leaf samples were taken for proline determination. There was a significant interaction (p<0.05) between seed colour, landraces and days to germinate with respect to germination capacity. Isaha and Masihlalisane landraces showed higher germination percentages than Kwayimba. There was also a significant interaction (p<0.05) between landraces and seed colour with respect to electrolyte conductivity. Lighter seeds of wild mustard landraces showed higher solute leakage. Isaha and Masihlalisane had higher solute leakage than Kwayimba. Significant interactions (p<0.05) between landraces and field capacity with respect to emergence, leaf number, root and shoot length and total proteins were also observed. Isaha and Masihlalisane showed higher emergence than Kwayimba. Leaf number was reduced for all landraces under water stress. Total protein content was high in black seeded landraces under water stress. There was a significant interaction (p<0.05) between landraces and field capacity with respect to seedling fresh and dry masses. Under moderate water stress conditions, Isaha and Masihlalisane showed increased biomass accumulation. There were highly significant differences (P<0.001) in plant height, leaf area, fresh and dry mass with respect to planting date. Plants performed significantly (p<0.05) better in spring than in winter. Isaha and Masihlalisane performed significantly (p<0.05) better than Kwayimba. There was a highly significant interaction (p<0.001) between landrace and irrigation treatments with respect to proline accumulation. Under water stress, Kwayimba black seeded landrace accumulated more proline. It is concluded that light-coloured seeds of wild mustard landraces were associated with good seed quality. Masihlalisane brown seeds have good early seedling establishment. Kwayimba black seeds showed tolerance to water stress through accumulation of proteins. Isaha and Masihlalisane showed an increase in biomass accumulation under moderate water stress. Water stress tolerance in some of wild mustard landraces was negatively correlated with proline accumulation. Masihlalisane brown type can grow well, with good yields, under water stress. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.
76

Agronomic performance of wild mustard in an intercropping with green beans.

Phiri, Nathan. January 2005 (has links)
Wild mustard (Brassica spp.) is used as an edible wild leafy vegetable by indigenous people in South Africa. The potential of wild leafy vegetables in agriculture is not well understood, because there is generally no agronomic research on their production practices. The objective of this study was to examine the performance of three wild mustard species (herein referred to as I, K and M) over four cropping seasons in an intercropping system with green beans (Phaseolus vulgaris L. cv. Imbali). The crops were grown with and without organic fertiliser under dryland conditions at two sites (The University of KwaZulu-Natal Research Farm, Ukulinga and in a rural area of Umbumbulu, KwaZulu-Natal within the farmers' locality) during autumn, winter, spring and summer of 2004 to 2005. Plant development (leaf number, plant height and fresh biomass) during the first six weeks after sowing and seed yield were used to determine agronomic performance of each species. Nutrient status of the rhizosphere soil was determined at 42 days after sowing for each species to determine what effect growing the species would have on mineral availability. Wild mustard production significantly (P < 0.01) performed better at Ukulinga than Umbumbulu. Polyculture was beneficial for wild mustard leaf accumulation and green bean production as determined by land equivalent ratios greater than one for all species combinations, regardless of fertiliser application. Cool environmental conditions occurring in autumn and spring were more favourable (P < 0.05) for wild mustard and green bean biomass accumulation than summer and winter conditions. However, wild mustard seed yield was highest in winter compared with autumn and spring, and there was no measurable seed production in summer. Soil analysis results at 42 days after sowing showed an increase in P, K, Cu and Mg in the rhizosphere of wild mustard without organic fertiliser. Polyculture improved Zn, Cu, Mn and K in wild mustard leaf tissue. It is concluded that wild mustard can be grown as a leafy vegetable throughout the year, but it requires cool environmental conditions to enhance seed yield. Species M significantly yielded better biomass and seeds than species I and K during all the seasons. However, species K performed the least in all aspects. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
77

The effects of chlormequat chloride and ethephon on selected small grain cereals in South Africa.

Ramburan, Sanesh January 2006 (has links)
Lodging poses a serious limitation to successful economic production of small grain cereals and can lead to extensive yield and quality losses. Plant growth regulators (PGR's) that reduce plant height and lodging have been employed in management systems in Europe and the United States, however, these compounds have not been evaluated on commercial cultivars of wheat, barley and oats in South Africa. Current recommendations to reduce lodging include limiting N inputs, seeding rates and critical irrigations, all of which may also limit yield potential and grain quality. The objectives of this study were to assess the effects of two common stem-elongation-inhibiting PGR's (chlormequat chloride and ethephon) on the growth, development, and agronomic characteristics of wheat, barley and oats. The aim of the study was to introduce an additional component of intensive cereal management in the form of PGR's, and to allow producers to implement intensive production practices without incurring losses due to lodging. Field trials were conducted with each of the three cereal crops in the 2003 and 2004 seasons at Vaalharts and Bethlehem. The PGR's were applied separately and in combination with each other to lodging-tolerant and -susceptible cultivars (wheat and oats) at different stages of development (tillering, elongation, flag leaf stage). The PGR's were also tested in combination with different levels of N (barley) applied at the haulm elongation stage, the flag leaf stage, or both. The PGR chlormequat produced negligible effects on plant height, lodging, yield, or quality components in all of the tested cultivars . Ethephon and the PGR combination successfully reduced plant height (by 120 to 150mm) and lodging (by 25 to 94%) when applied to the lodging susceptible cultivars of wheat and oats at the flag leaf stage or as a split application to the barley cultivar "Puma" (plant height and lodging reduced by 180 to 230mm and 83 to 92% respectively). Effects on grain yield were variable, ranging from occasional reductions (by 3 t ha(-1) and improvements (by 1 t ha(-1) with the barley, and no effects with the wheat and oats. Wheat quality parameters such as protein content and hectolitre mass were improved by 2 and 4% respectively. However, the nature of the responses was highly dependent on the times of application with later applications producing the greatest positive effects on quality, yield and lodging reductions. Additionally, ethephon and the PGR combination allowed higher levels of N to be employed without increases in lodging of barley. Generally, ethephon and the PGR combination applied at the flag leaf stage of growth are suitable anti-lodging tools for small grain cereal production and should be employed as an insurance measure against lodging in intensive management systems. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
78

Responses of Bambara groundnut (Vigna Subterannea L. Verdc) landraces to field and controlled environment conditions of water stress.

Zondi, Lungelwa Zandile. January 2012 (has links)
Bambara groundnut (Vigna subterranea L. Verdc) is a drought tolerant African legume capable of producing reasonable yields where other crops may fail. However, it remains an underutilised crop, owing to limited research, cultivated using landraces, of which scant information is available describing their agronomy and genetic diversity. The aim of this study was to evaluate the response of bambara landraces from different geographical locations to water stress under controlled and field conditions. Seeds were sourced from subsistence farmers of Tugela Ferry and Deepdale in KwaZulu-Natal (South Africa) and Zimbabwe, and characterised into three seed coat colours: light-brown, brown and red. Seed quality was assessed using the standard germination test. Vigour indices of germination velocity index and mean germination time were determined. Seedling establishment was evaluated using seedling trays using a factorial experiment, with four factors: 1. provenance – (Tugela Ferry and Deepdale), 2. seed colour – (red, light-brown and brown), 3. water regimes – (30%, 60% and 100% field capacity), and 4. soil media – (clay, sand and clay + sand). Seedling leaf samples were used to evaluate proline accumulation as an indicator of stress tolerance. A field trial was used to evaluate productivity of bambara landraces under rainfed and irrigated conditions. A pot trial was conducted under controlled environment conditions with three factors: temperature (33/27°C and 21/15°C), water regimes (30% and 100% of crop water requirement) and bambara landrace selections. Results showed no significant differences in germination capacity between bambara landrace selections. Germination time differed significantly (P<0.001) between bambara landrace selections. The Jozini provenance was shown to perform best, followed by Zimbabwe, Tugela Ferry and Deepdale. Brown landrace selections had higher (P<0.001) germination compared with red and light-brown selections, respectively. Seedling establishment showed that emergence was higher (P<0.001) at 100% FC compared with 60% FC and 30% FC. Emergence was higher (P<0.001) in the Sand+Clay mixture compared with Clay and Sand media. Dark-coloured selections had higher (P<0.001) emergence compared with light-coloured selections. Results from the field trial showed that the red landrace selections emerged better (P<0.001) than the light-brown and brown landrace selections, respectively. Plant growth was lower under irrigated compared with rainfed conditions. Stomatal conductance was higher (P<0.001) under irrigated compared with rainfed conditions, whereas chlorophyll content index was higher (P<0.05) under rainfed compared with irrigated conditions. Results of the pot trial showed that emergence was significantly (P<0.001) affected by temperature. It was higher at 33/27°C compared with 21/15°C (P<0.001). Dark-coloured landraces had higher emergence compared with the light-brown landraces. Stomatal conductance was lower at 30% ET relative to 100% ETc. There were no significant differences between water regimes with respect to biomass, pod number per plant, pod mass per plant, seed number per pod, seed mass per plant and harvest index. It is concluded that seed colour is an important variable in the identity of bambara landraces. Provenance plays a significant role in seed performance and there is a significant interaction between provenance and seed coat colour. This study could be expanded to obtain more data for crop improvement through inclusion of many sites and seasons for better agronomic advice to farmers. / Thesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
79

Drought tolerance and water-use of selected South African landraces of Taro (Colocasia esculenta L. schott) and Bambara groundnut (Vigna subterranea L. Verdc)

Mabhaudhi, Tafadzwanashe. 18 November 2013 (has links)
Issues surrounding water scarcity will become topical in future as global fresh water resources become more limited thus threaten crop production. Predicted climate change and increasing population growth will place more pressure on agriculture to produce more food using less water. As such, efforts have now shifted to identifying previously neglected underutilised species (NUS) as possible crops that could be used to bridge the food gap in future. Taro (Colocasia esculenta L. Schott) and bambara groundnut (Vigna subterranea L. Verdc) currently occupy low levels of utilisation in South Africa. Both crops are cultivated using landraces with no improved varieties available. Information describing their agronomy and water–use is limited and remains a bottleneck to their promotion. The aim of this study was to determine the drought tolerance and water–use of selected landraces of taro and bambara groundnut from KwaZulu-Natal, South Africa. In order to meet the specific objectives for taro and bambara groundnut management, an approach involving conventional and modelling techniques was used. Three taro landraces [Dumbe Lomfula (DL), KwaNgwanase (KW) and Umbumbulu (UM)] were collected from the North Coast and midlands of KwaZulu-Natal, South Africa, in 2010. The UM landrace was classified as Eddoe type taro (C. esculenta var. antiquorum) characterised by a central corm and edible side cormels. The DL and KW landraces were classified as Dasheen (C. esculenta var. esculenta), characterised by a large edible main corm and smaller side cormels. A bambara groundnut landrace was collected from Jozini, KwaZulu- Natal, and characterised into three selections (‘Red’, ‘Light-brown’ and ‘Brown’) based on seed coat colour. Seed colour was hypothesised to have an effect on seed quality. Field and rainshelter experiments were conducted for both taro and bambara landraces at Roodeplaat in Pretoria and Ukulinga Research Farm in Pietermaritzburg, over two growing seasons (2010/11 and 2011/12). The objective of the field trials for taro and bambara groundnut was to determine mechanisms associated with drought tolerance in taro and bambara groundnut landraces. Experiments were laid out in a split-plot design where irrigation [fully irrigated (FI) and rainfed (RF)] was the main factor and landraces (3 landraces of either taro or bambara groundnut) were sub-factors. Treatments were arranged in a randomised complete block design (RCBD), replicated three times. Rainfed trials were established with irrigation to allow for maximum crop stand. Thereafter, irrigation was withdrawn. Whilst experimental designs and layouts for taro and bambara groundnut were similar, differences existed with regards to plot sizes and plant spacing. Trials were planted on a total land area of 500 m2 and 144 m2, for taro and bambara groundnut, respectively. Plant spacing was 1 m x 1 m for taro and 0.3 m x 0.3 m for bambara groundnut. Irrigation scheduling in the FI treatment was based on ETo and Kc and was applied using sprinkler irrigation system. Separate rainshelter experiments were conducted for taro and bambara groundnut landraces at Roodeplaat, to evaluate growth, yield and water-use of taro and bambara groundnut landraces under a range of water regimes. The experimental design was similar for both crops, a RCBD with two treatment factors: irrigation level [30, 60 and 100% crop water requirement (ETa)] and landrace (3 landraces), replicated three times. Irrigation water was applied using drip irrigation system based on ETo and Kc. Data collection in field and rainshelter trials included time to emergence, plant height, leaf number, leaf area index (LAI), stomatal conductance and chlorophyll content index (CCI). For taro field trials, vegetative growth index (VGI) was also determined. Yield and yield components (harvest index, biomass, corm number and mass) as well as water–use efficiency (WUE) were determined at harvest. Intercropping of taro and bambara groundnut was evaluated under dryland conditions using farmers’ fields at Umbumbulu, KwaZulu–Natal, South Africa. The experimental design was a RCBD replicated three times. Intercrop combinations included taro and bambara groundnut sole crops, a 1:1 (one row taro to one row bambara groundnut) and 1:2 intercrop combinations. The taro UM landrace and ‘Red’ bambara groundnut landrace selection were used in the intercropping study. Lastly, data collected from field and rainshelter experiments were used to develop crop parameters to calibrate and validate the FAO’s AquaCrop model for taro and bambara groundnut landraces. The UM landrace was used for taro while the ‘Red’ landrace selection was used for bambara groundnut. AquaCrop was calibrated using observed data from optimum (FI) experiments conducted during 2010/11. Model validation was done using observations from field and rainshelter experiments conducted during 2011/12 as well as independent data. Results showed that all taro landraces were slow to emerge (≈ 49 days after planting). Stomatal conductance declined under conditions of limited water availability (RF, 60% and 30% ETa). The UM landrace showed better stomatal regulation compared with KW and DL landraces under conditions of limited water availability. Plant growth (plant height, leaf number, LAI and CCI) of taro landraces was lower under conditions of limited water availability (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). The UM landrace showed moderate reductions in growth compared with the DL and KW landraces, suggesting greater adaptability to water limited conditions. The VGI showed a large reduction in growth under RF conditions and confirmed the UM landrace’s adaptability to limited water availability. Limited water availability (RF, 60% and 30% ETa) resulted in lower biomass, HI, and final yield in taro landraces relative to optimum conditions (FI and 100% ETa). For all trials, the DL landrace failed to produce any yield. WUE of taro landraces was consistent for the three irrigation levels (30, 60 and 100% ETa); however, on average, the UM landrace was shown to have a higher WUE than the KW landrace. Bambara groundnut landraces were slow to emerge (up to 35 days after planting). ‘Red’ and ‘Brown’ landrace selections emerged better than the ‘Light-brown’ landrace selection, confirming the effect of seed colour on early establishment performance. Plant growth (stomatal conductance, CCI, plant height, leaf number, LAI and biomass accumulation) was lower under conditions of limited water availability (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). The ‘Red’ landrace selection showed better adaptation to stress. Limited water availability resulted in early flowering and reduced flowering duration as well as early senescence and maturity of bambara groundnut landrace selections. The ‘Red’ landrace selection showed delayed leaf senescence under conditions of limited water availability. Yield reductions of up to 50% were observed under water limited conditions (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). Water use efficiency increased at 60% and 30% ETa, respectively, relative to 100% ETa, implying adaptability to limited water availability. The ‘Red’ landrace selection showed better yield stability and WUE compared with the ‘Brown’ and ‘Light-brown’ landrace selections suggesting that seed colour may be used as a selection criterion for drought tolerance in bambara groundnut landraces. The intercropping study showed that intercropping, as an alternative cropping system, had more potential than monocropping. Evaluation of growth parameters showed that taro plant height was generally unaffected by intercropping but lower leaf number was observed as compared with the sole crop. Bambara groundnut plants were taller and had more leaves under intercropping relative to the sole crop. Although not statistically significant, yield was generally lower in the intercrops compared with the sole crops. Evaluation of intercrop productivity using the land equivalent ratio (LER) showed that intercropping taro and bambara groundnut at a ratio of 1:1 was more productive (LER = 1.53) than intercropping at a ratio of 1:2 (LER = 1.23). The FAO’s AquaCrop model was then calibrated for the taro UM landrace and ‘Red’ bambara groundnut landrace selection. This was based on observations from previous experiments that suggested them to be drought tolerant and stable. Calibration results for taro and bambara groundnut landraces showed an excellent fit between predicted and observed parameters for canopy cover (CC), biomass and yield. Model validation for bambara groundnut showed good model performance under field (FI and RF) conditions. Model performance was satisfactory for rainshelters. Validation results for taro showed good model performance under all conditions (field and rainshelters), although the model over-estimated CC for the declining stage of canopy growth under RF conditions. Model verification using independent data for taro showed equally good model performance. In conclusion, the taro UM landrace and ‘Red’ bambara groundnut landrace selection were shown to be drought tolerant and adapted to low levels of water–use. The mechanisms responsible for drought tolerance in the taro UM landrace and ‘Red’ bambara groundnut landrace selection were described as drought avoidance and escape. The taro UM landrace and ‘Red’ bambara groundnut landraces avoided stress through stomatal regulation, energy dissipation (loss of chlorophyll) as well as reducing canopy size (plant height, leaf number and LAI), which translates to minimised transpirational water losses. This indicated landrace adaptability to low levels of water–use. The ‘Red’ bambara groundnut landrace selection showed phenological plasticity and escaped drought by flowering early, delaying leaf senescence, and maturing early under conditions of limited water availability. Performance of the ‘Red’ landrace selection lends credence to the use of seed coat colour as a possible selection criterion for drought tolerance in bambara groundnut, and possibly for other landraces with variegated seed. The taro UM landrace escaped drought by maturing early under conditions of limited water availability. The FAO’s AquaCrop model was successfully calibrated and validated for taro UM and ‘Red’ bambara groundnut landraces. The calibration and validation of AquaCrop for taro is the first such attempt and represents progress in the modelling of neglected underutilised crops. The calibration and validation of AquaCrop for taro requires further fine-tuning while that for bambara groundnut still needs to be tested for more diverse landraces. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.
80

Drought tolerance and water-use of selected South African landraces of Taro (Colocasia esculenta L. schott) and Bambara groundnut (Vigna subterranea L. Verdc)

Mabhaudhi, Tafadzwanashe. 14 November 2013 (has links)
Issues surrounding water scarcity will become topical in future as global fresh water resources become more limited thus threaten crop production. Predicted climate change and increasing population growth will place more pressure on agriculture to produce more food using less water. As such, efforts have now shifted to identifying previously neglected underutilised species (NUS) as possible crops that could be used to bridge the food gap in future. Taro (Colocasia esculenta L. Schott) and bambara groundnut (Vigna subterranea L. Verdc) currently occupy low levels of utilisation in South Africa. Both crops are cultivated using landraces with no improved varieties available. Information describing their agronomy and water–use is limited and remains a bottleneck to their promotion. The aim of this study was to determine the drought tolerance and water–use of selected landraces of taro and bambara groundnut from KwaZulu-Natal, South Africa. In order to meet the specific objectives for taro and bambara groundnut management, an approach involving conventional and modelling techniques was used. Three taro landraces [Dumbe Lomfula (DL), KwaNgwanase (KW) and Umbumbulu (UM)] were collected from the North Coast and midlands of KwaZulu-Natal, South Africa, in 2010. The UM landrace was classified as Eddoe type taro (C. esculenta var. antiquorum) characterised by a central corm and edible side cormels. The DL and KW landraces were classified as Dasheen (C. esculenta var. esculenta), characterised by a large edible main corm and smaller side cormels. A bambara groundnut landrace was collected from Jozini, KwaZulu- Natal, and characterised into three selections (‘Red’, ‘Light-brown’ and ‘Brown’) based on seed coat colour. Seed colour was hypothesised to have an effect on seed quality. Field and rainshelter experiments were conducted for both taro and bambara landraces at Roodeplaat in Pretoria and Ukulinga Research Farm in Pietermaritzburg, over two growing seasons (2010/11 and 2011/12). The objective of the field trials for taro and bambara groundnut was to determine mechanisms associated with drought tolerance in taro and bambara groundnut landraces. Experiments were laid out in a split-plot design where irrigation [fully irrigated (FI) and rainfed (RF)] was the main factor and landraces (3 landraces of either taro or bambara groundnut) were sub-factors. Treatments were arranged in a randomised complete block design (RCBD), replicated three times. Rainfed trials were established with irrigation to allow for maximum crop stand. Thereafter, irrigation was withdrawn. Whilst experimental designs and layouts for taro and bambara groundnut were similar, differences existed with regards to plot sizes and plant spacing. Trials were planted on a total land area of 500 m2 and 144 m2, for taro and bambara groundnut, respectively. Plant spacing was 1 m x 1 m for taro and 0.3 m x 0.3 m for bambara groundnut. Irrigation scheduling in the FI treatment was based on ETo and Kc and was applied using sprinkler irrigation system. Separate rainshelter experiments were conducted for taro and bambara groundnut landraces at Roodeplaat, to evaluate growth, yield and water-use of taro and bambara groundnut landraces under a range of water regimes. The experimental design was similar for both crops, a RCBD with two treatment factors: irrigation level [30, 60 and 100% crop water requirement (ETa)] and landrace (3 landraces), replicated three times. Irrigation water was applied using drip irrigation system based on ETo and Kc. Data collection in field and rainshelter trials included time to emergence, plant height, leaf number, leaf area index (LAI), stomatal conductance and chlorophyll content index (CCI). For taro field trials, vegetative growth index (VGI) was also determined. Yield and yield components (harvest index, biomass, corm number and mass) as well as water–use efficiency (WUE) were determined at harvest.Intercropping of taro and bambara groundnut was evaluated under dryland conditions using farmers’ fields at Umbumbulu, KwaZulu–Natal, South Africa. The experimental design was a RCBD replicated three times. Intercrop combinations included taro and bambara groundnut sole crops, a 1:1 (one row taro to one row bambara groundnut) and 1:2 intercrop combinations. The taro UM landrace and ‘Red’ bambara groundnut landrace selection were used in the intercropping study. Lastly, data collected from field and rainshelter experiments were used to develop crop parameters to calibrate and validate the FAO’s AquaCrop model for taro and bambara groundnut landraces. The UM landrace was used for taro while the ‘Red’ landrace selection was used for bambara groundnut. AquaCrop was calibrated using observed data from optimum (FI) experiments conducted during 2010/11. Model validation was done using observations from field and rainshelter experiments conducted during 2011/12 as well as independent data. Results showed that all taro landraces were slow to emerge (≈ 49 days after planting). Stomatal conductance declined under conditions of limited water availability (RF, 60% and 30% ETa). The UM landrace showed better stomatal regulation compared with KW and DL landraces under conditions of limited water availability. Plant growth (plant height, leaf number, LAI and CCI) of taro landraces was lower under conditions of limited water availability (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). The UM landrace showed moderate reductions in growth compared with the DL and KW landraces, suggesting greater adaptability to water limited conditions. The VGI showed a large reduction in growth under RF conditions and confirmed the UM landrace’s adaptability to limited water availability. Limited water availability (RF, 60% and 30% ETa) resulted in lower biomass, HI, and final yield in taro landraces relative to optimum conditions (FI and 100% ETa). For all trials, the DL landrace failed to produce any yield. WUE of taro landraces was consistent for the three irrigation levels (30, 60 and 100% ETa); however, on average, the UM landrace was shown to have a higher WUE than the KW landrace. Bambara groundnut landraces were slow to emerge (up to 35 days after planting). ‘Red’ and ‘Brown’ landrace selections emerged better than the ‘Light-brown’ landrace selection, confirming the effect of seed colour on early establishment performance. Plant growth (stomatal conductance, CCI, plant height, leaf number, LAI and biomass accumulation) was lower under conditions of limited water availability (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). The ‘Red’ landrace selection showed better adaptation to stress. Limited water availability resulted in early flowering and reduced flowering duration as well as early senescence and maturity of bambara groundnut landrace selections. The ‘Red’ landrace selection showed delayed leaf senescence under conditions of limited water availability. Yield reductions of up to 50% were observed under water limited conditions (RF, 60% and 30% ETa) relative to optimum conditions (FI and 100% ETa). Water use efficiency increased at 60% and 30% ETa, respectively, relative to 100% ETa, implying adaptabilityto limited water availability. The ‘Red’ landrace selection showed better yield stability and WUE compared with the ‘Brown’ and ‘Light-brown’ landrace selections suggesting that seed colour may be used as a selection criterion for drought tolerance in bambara groundnut landraces. The intercropping study showed that intercropping, as an alternative cropping system, had more potential than monocropping. Evaluation of growth parameters showed that taro plant height was generally unaffected by intercropping but lower leaf number was observed as compared with the sole crop. Bambara groundnut plants were taller and had more leaves under intercropping relative to the sole crop. Although not statistically significant, yield was generally lower in the intercrops compared with the sole crops. Evaluation of intercrop productivity using the land equivalent ratio (LER) showed that intercropping taro and bambara groundnut at a ratio of 1:1 was more productive (LER = 1.53) than intercropping at a ratio of 1:2 (LER = 1.23). The FAO’s AquaCrop model was then calibrated for the taro UM landrace and ‘Red’ bambara groundnut landrace selection. This was based on observations from previous experiments that suggested them to be drought tolerant and stable. Calibration results for taro and bambara groundnut landraces showed an excellent fit between predicted and observed parameters for canopy cover (CC), biomass and yield. Model validation for bambara groundnut showed good model performance under field (FI and RF) conditions. Model performance was satisfactory for rainshelters. Validation results for taro showed good model performance under all conditions (field and rainshelters), although the model over-estimated CC for the declining stage of canopy growth under RF conditions. Model verification using independent data for taro showed equally good model performance. In conclusion, the taro UM landrace and ‘Red’ bambara groundnut landrace selection were shown to be drought tolerant and adapted to low levels of water–use. The mechanisms responsible for drought tolerance in the taro UM landrace and ‘Red’ bambara groundnut landrace selection were described as drought avoidance and escape. The taro UM landrace and ‘Red’ bambara groundnut landraces avoided stress through stomatal regulation, energy dissipation (loss of chlorophyll) as well as reducing canopy size (plant height, leaf number and LAI), which translates to minimised transpirational water losses. This indicated landrace viii adaptability to low levels of water–use. The ‘Red’ bambara groundnut landrace selection showed phenological plasticity and escaped drought by flowering early, delaying leaf senescence, and maturing early under conditions of limited water availability. Performance of the ‘Red’ landrace selection lends credence to the use of seed coat colour as a possible selection criterion for drought tolerance in bambara groundnut, and possibly for other landraces with variegated seed. The taro UM landrace escaped drought by maturing early under conditions of limited water availability. The FAO’s AquaCrop model was successfully calibrated and validated for taro UM and ‘Red’ bambara groundnut landraces. The calibration and validation of AquaCrop for taro is the first such attempt and represents progress in the modelling of neglected underutilised crops. The calibration and validation of AquaCrop for taro requires further fine-tuning while that for bambara groundnut still needs to be tested for more diverse landraces. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.

Page generated in 0.076 seconds