Spelling suggestions: "subject:"crop simulation models"" "subject:"drop simulation models""
1 |
Monitoring the effects of drought on wheat yields in SaskatchewanChipanshi, Aston Chipampe 01 January 1996 (has links)
In order to reduce the vulnerability of wheat production to drought, a calibrated and validated CERES Wheat crop simulation model was used to predict wheat yields on major soil textural groups using historical weather data at Swift Current, Saskatoon and Melfort. Yields were predicted using a run-out technique which involved the use of actual weather data to the prediction date and historical weather data from 1960 to 1990 for the remainder of the growing season. Yield predictions were made at five Julian dates during the crop calendar and these dates coincided with crop emergence, terminal spikelet initiation, end of the vegetative growth, heading and start of grain filling. Three sample years were used as case studies to test the applicability of the run-out method in making yield predictions. Sample base years were those with the lowest, medium and highest yields between 1960 and 1990 and these were selected from ranked yield values using quartiles. Test years were termed base years and weather files that were joined with the test years were run-out years. Each base year had 30 run-out years (1960-1990) and the mean of each run-out year was compared with the observed yield at the end of the season. Run-out yields for each base year were summarised as simple probability distributions so that yields exceeding certain values could be selected. Run-out yields at five prediction dates were found to be in close agreement with observed yields at the end of the growing season. To account for the variability in yields that can be found between places within the same climatic zone, simulated yields were re-classified by soil type and water stress level. These modifiers (soil type and water stress level) showed that chances of getting high yields diminish from Melfort to Swift Current at all prediction points due to the high variability of yield factors. Yield predictions that were made as above suggested that if historical weather records are combined with available weather data during the growing season, a good indication of yields can be obtained ahead of the harvest time and this could allow producers and those in the agri-business to decide on alternative actions of minimizing losses when prospects of getting a good yield are poor.
|
2 |
Modelos de simulação da cultura do milho - uso na determinação das quebras de produtividade (Yield Gaps) e na previsão de safra da cultura no Brasil / Maize simulation models - use to determine yield gaps and yield forecasting in BrazilDuarte, Yury Catalani Nepomuceno 18 January 2018 (has links)
Sendo o cereal mais produzido no mundo e em larga expansão, os sistemas de produção de milho são altamente complexos e sua produção é diretamente dependente de fatores ligados tanto ao clima local quanto ao manejo da cultura. Para auxiliar na determinação tanto dos patamares produtivos de milho quanto quantificar o impacto causado por condições adversas tanto de clima quanto de manejo, pode-se lançar mão do uso de modelos de simulação de culturas. Para que os modelos possam ser devidamente aplicados, uma base solida de dados meteorológicos deve ser consistida, a fim de alimentar esses modelos. Nesse sentido, o presente estudo teve como objetivos: i) avaliar dois sistemas de obtenção de dados meteorológicos, o NASA-POWER e o DailyGridded, comparando-os com dados medidos em estações de solo; ii) calibrar, testar e combinar os modelos de simulação MZA-FAO, CSM DSSAT Ceres-Maize e APSIM-Maize, a fim de estimar as produtividades potenciais e atingíveis do milho no Brasil; iii) avaliar o impacto na produtividade causado pelo posicionamento da semeadura em diferentes tipos de solo; iv) desenvolver e avaliar um sistema de previsão de safra baseado em modelos de simulação; v) mapear as produtividades potencial, atingível e real do milho no Brasil, identificando regiões mais aptas ao cultivo e vi) determinar e mapear as quebras de produtividade, ou yield gaps (YG) da cultura do milho no Brasil. Comparando os dados climáticos dos sistemas em ponto de grade com os dados de estações meteorológicas de superfície, na escala diária, encontrou-se boa correlação entre as variáveis meteorológicas, inclusive para a chuva, com R2 da ordem de 0,58 e índice d = 0,85. O desempenho da combinação dos modelos ao final da calibração e ajuste se mostrou superior ao desempenho dos modelos individuais, com erros absolutos médios relativamente baixos (EAM = 627 kg ha-1) e com boa precisão (R2 = 0,62) e ótima acurácia (d = 1,00). Durante a avaliação da influência das épocas de semeadura e do tipo de solo no patamar produtivo do milho, observou-se que esse varia de acordo com a região estudada e apresenta seus valores máximos e com menores riscos à produção quando a semeaduras coincidem com o início do período de chuvas do local. O sistema de previsão de safra, baseado em modelos de simulação de cultura teve seu melhor desempenho simulando produtividades de milho semeados no início da safra e no final da safrinha, sendo capaz de prever de forma satisfatória a produtividade com até 25 dias antes da colheita. Para o estudo dos YGs, 152 locais foram avaliados e suas produtividades potenciais e atingíveis foram comparadas às produtividades reais, obtidas junto ao IBGE. Os maiores YGs referentes ao déficit hídrico se deram em solos arenosos e durante os meses de outono e inverno, usualmente mais secos na maioria das regiões brasileiras, atingindo valores de quebra superiores a 12000 kg ha-1. Quanto ao YG causado pelo manejo, esse foi maior nas regiões menos tecnificadas, como na região Norte e na Nordeste, apresentando valores superiores a 6000 kg ha-1. Já as regiões mais tecnificadas e tradicionais na produção de milho, como a região Sul e a Centro-Oeste, os YGs referentes ao manejo foram inferiores a 3500 kg ha-1 na maioria dos casos. / Maize is the most important cereal cultivated in the world, being its production system very complex and its productivity directly affected by climatic and crop management factors. In order to quantify the impacts caused by water and crop management deficits on maize yield, the use of crop simulation models is very useful. For properly apply these models, a solid basis of meteorological data is required. In this sense, the present study had as objectives: i) to evaluate two meteorological gridded data, NASA-POWER and DailyGridded, by comparing them with measured data from surface stations; (ii) to calibrate, evaluate and combine the MZA-FAO, CSM DSSAT Ceres-Maize and APSIM-Maize simulation models to estimate the maize potential and attainable yields in Brazil; iii) to evaluate the impact caused by the different sowing dates and soil types on maize yield; iv) to develop and evaluate a crop forecasting system based on crop simulation models and climatological data; v) to map the potential and the attainable maize yields in Brazil, identifying the most suitable regions for cultivation, and vi) to determine and map maize yields and yield gaps (YG) in Brazil. Comparing the gridded climatic data with observed ones, on a daily basis, a good agreement was found for all weather variables, including rainfall, with R2 = 0.58 and d = 0,85. The performances of the combination of the models at the end of the calibration and evaluation phases were better than those obtained with the individual models, with relatively low mean absolute error (EAM = 627 kg ha-1) and with good precision (R2 = 0.62) and accuracy (d = 1.00). During the evaluation of different sowing dates and soil types on maize yield, it was observed that this variable depends on the region and presents the maximum values and, consequently, the minimum risk during the sowings in the beginning of the rainy season of each site. The crop forecasting system, based on crop simulation models, had its best performance for simulating maize yields when the sowings were performed at the beginning of the main season and at the end of the second season, when it was able to predict yield satisfactorily 25 days before harvest. For the YG analysis, 152 sites were assessed and their potential and attainable yields were compared to the actual yields reported by IBGE. The highest YGs caused by water deficit occurred for sandy soils and during the autumn and winter months, usually dry in most of Brazilian regions, reaching values above 12000 kg ha-1. For YG caused by crop management, the values were higher in the less technified regions, such as in the North and Northeast regions, with values above 6000 kg ha-1. In contrast, more traditional maize production regions, such as the South and Center-West, presented YG caused by crop management, lower than 3500 kg ha-1 in most cases.
|
3 |
Modelos de simulação da cultura do milho - uso na determinação das quebras de produtividade (Yield Gaps) e na previsão de safra da cultura no Brasil / Maize simulation models - use to determine yield gaps and yield forecasting in BrazilYury Catalani Nepomuceno Duarte 18 January 2018 (has links)
Sendo o cereal mais produzido no mundo e em larga expansão, os sistemas de produção de milho são altamente complexos e sua produção é diretamente dependente de fatores ligados tanto ao clima local quanto ao manejo da cultura. Para auxiliar na determinação tanto dos patamares produtivos de milho quanto quantificar o impacto causado por condições adversas tanto de clima quanto de manejo, pode-se lançar mão do uso de modelos de simulação de culturas. Para que os modelos possam ser devidamente aplicados, uma base solida de dados meteorológicos deve ser consistida, a fim de alimentar esses modelos. Nesse sentido, o presente estudo teve como objetivos: i) avaliar dois sistemas de obtenção de dados meteorológicos, o NASA-POWER e o DailyGridded, comparando-os com dados medidos em estações de solo; ii) calibrar, testar e combinar os modelos de simulação MZA-FAO, CSM DSSAT Ceres-Maize e APSIM-Maize, a fim de estimar as produtividades potenciais e atingíveis do milho no Brasil; iii) avaliar o impacto na produtividade causado pelo posicionamento da semeadura em diferentes tipos de solo; iv) desenvolver e avaliar um sistema de previsão de safra baseado em modelos de simulação; v) mapear as produtividades potencial, atingível e real do milho no Brasil, identificando regiões mais aptas ao cultivo e vi) determinar e mapear as quebras de produtividade, ou yield gaps (YG) da cultura do milho no Brasil. Comparando os dados climáticos dos sistemas em ponto de grade com os dados de estações meteorológicas de superfície, na escala diária, encontrou-se boa correlação entre as variáveis meteorológicas, inclusive para a chuva, com R2 da ordem de 0,58 e índice d = 0,85. O desempenho da combinação dos modelos ao final da calibração e ajuste se mostrou superior ao desempenho dos modelos individuais, com erros absolutos médios relativamente baixos (EAM = 627 kg ha-1) e com boa precisão (R2 = 0,62) e ótima acurácia (d = 1,00). Durante a avaliação da influência das épocas de semeadura e do tipo de solo no patamar produtivo do milho, observou-se que esse varia de acordo com a região estudada e apresenta seus valores máximos e com menores riscos à produção quando a semeaduras coincidem com o início do período de chuvas do local. O sistema de previsão de safra, baseado em modelos de simulação de cultura teve seu melhor desempenho simulando produtividades de milho semeados no início da safra e no final da safrinha, sendo capaz de prever de forma satisfatória a produtividade com até 25 dias antes da colheita. Para o estudo dos YGs, 152 locais foram avaliados e suas produtividades potenciais e atingíveis foram comparadas às produtividades reais, obtidas junto ao IBGE. Os maiores YGs referentes ao déficit hídrico se deram em solos arenosos e durante os meses de outono e inverno, usualmente mais secos na maioria das regiões brasileiras, atingindo valores de quebra superiores a 12000 kg ha-1. Quanto ao YG causado pelo manejo, esse foi maior nas regiões menos tecnificadas, como na região Norte e na Nordeste, apresentando valores superiores a 6000 kg ha-1. Já as regiões mais tecnificadas e tradicionais na produção de milho, como a região Sul e a Centro-Oeste, os YGs referentes ao manejo foram inferiores a 3500 kg ha-1 na maioria dos casos. / Maize is the most important cereal cultivated in the world, being its production system very complex and its productivity directly affected by climatic and crop management factors. In order to quantify the impacts caused by water and crop management deficits on maize yield, the use of crop simulation models is very useful. For properly apply these models, a solid basis of meteorological data is required. In this sense, the present study had as objectives: i) to evaluate two meteorological gridded data, NASA-POWER and DailyGridded, by comparing them with measured data from surface stations; (ii) to calibrate, evaluate and combine the MZA-FAO, CSM DSSAT Ceres-Maize and APSIM-Maize simulation models to estimate the maize potential and attainable yields in Brazil; iii) to evaluate the impact caused by the different sowing dates and soil types on maize yield; iv) to develop and evaluate a crop forecasting system based on crop simulation models and climatological data; v) to map the potential and the attainable maize yields in Brazil, identifying the most suitable regions for cultivation, and vi) to determine and map maize yields and yield gaps (YG) in Brazil. Comparing the gridded climatic data with observed ones, on a daily basis, a good agreement was found for all weather variables, including rainfall, with R2 = 0.58 and d = 0,85. The performances of the combination of the models at the end of the calibration and evaluation phases were better than those obtained with the individual models, with relatively low mean absolute error (EAM = 627 kg ha-1) and with good precision (R2 = 0.62) and accuracy (d = 1.00). During the evaluation of different sowing dates and soil types on maize yield, it was observed that this variable depends on the region and presents the maximum values and, consequently, the minimum risk during the sowings in the beginning of the rainy season of each site. The crop forecasting system, based on crop simulation models, had its best performance for simulating maize yields when the sowings were performed at the beginning of the main season and at the end of the second season, when it was able to predict yield satisfactorily 25 days before harvest. For the YG analysis, 152 sites were assessed and their potential and attainable yields were compared to the actual yields reported by IBGE. The highest YGs caused by water deficit occurred for sandy soils and during the autumn and winter months, usually dry in most of Brazilian regions, reaching values above 12000 kg ha-1. For YG caused by crop management, the values were higher in the less technified regions, such as in the North and Northeast regions, with values above 6000 kg ha-1. In contrast, more traditional maize production regions, such as the South and Center-West, presented YG caused by crop management, lower than 3500 kg ha-1 in most cases.
|
4 |
Improving irrigated cropping systems on the high plains using crop simulation modelsPachta, Christopher James January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / Irrigated cropping systems on the High Plains are dominated by water intensive continuous corn (Zea mays L.) production, which along with other factors has caused a decline in the Ogallala aquifer. Potentially demand for water from the aquifer could be decreased by including drought tolerant crops, like grain sorghum (Sorghum bicolor L.) and cotton (Gossypium hirsutum L.), in the cropping systems. This study calibrated the CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton models for the High Plains and studied the simulated effects of different irrigation amounts and initial soil water contents on corn, cotton, and grain sorghum. Input files for calibration were created from irrigated and dryland research plots across Kansas. Information was collected on: soil physical properties, dry matter, leaf area, initial and final soil water content, management, and weather. CERES-Maize simulated grain yield, kernel number, ear number, and seed weight across the locations with root mean square errors (RMSE) of 2891 kg ha-1, 1283 kernels m-2, 1.6 ears m-2, and 38.02 mg kernel-1, respectively. CERES-Sorghum simulated grain yield, kernel number, head number, and seed weight with RMSEs of 2150 kg ha-1, 5755 kernels m-2, 0.13 heads m-2, and 4.51 mg kernel-1. CROPGRO-Cotton simulated lint yield and boll number with RMSEs of 487 kg ha-1 and 25.97 bolls m-2.
Simulations were also conducted with CERES-Maize, CERES-Sorghum, and CROPGRO-Cotton to evaluate the effects of irrigation amounts and initial soil water content on yield, evapotranspiration (ET), water use efficiency (WUE), available soil
water at maturity, and gross income per hectare. Simulations used weather data from
Garden City, KS from 1961 to 1999. Irrigation amounts were different for all variables
for corn and grain sorghum. For cotton, yield, WUE, soil water, and gross income were
not different between the top two irrigation amounts. For corn and grain sorghum, initial
soil water content was only different at 50% plant available water. Initial soil water had
no affect on cotton, except for ET at 50%. Simulations showed that cotton yields are
similar at lower irrigation. Also, cropping systems that include cotton have the potential to reduce overall irrigation demand on the Ogallala aquifer, potentially prolonging the life of the aquifer.
|
Page generated in 0.0958 seconds