• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulação de produtividade de milho em diferentes épocas de semeio em Arapiraca, Alagoas, pelo modelo AquaCrop / Simulation of maize yield at different times of sowing in Arapiraca, Alagoas, the model AquaCrop

Anjos, Franklin Alves dos 27 October 2011 (has links)
The maize (Zea mays L.), due to its importance in human and animal diet, is one of the most widespread crop in the world. In Brazil, it is cultivated in almost all regions, due to this, has been the focus of agrometeorological modeling for decades. The AquaCrop model was used in this work in order to simulate the total biomass and daily yield, and get the corn crop forecast for the region of Arapiraca, Alagoas. The model uses the canopy cover (CC), instead of leaf area index (LAI) as a basis for separate calculations of the plant transpiration and evaporation of soil water. The productivity is calculated as the product of biomass and harvest index (HI). The input data of model experiments were performed by Medeiros (2008), in Batingas town in the country of Arapiraca-AL. For four seasons of sowing, the results of soil water storage simulated by the model AquaCrop tended to be similar to those observed variation. However, for the third sowing date had observed the storage maximum value (171.66 mm) at 35 DAE, whereas the maximum simulated (115.0 mm) occurred at 24 DAE. For the final yield biomass (kg ha-1) the maximum and minimum values observed (simulated) ranged from 13.059 (11.861) and 9.873 (8.306) for 3rd and 4th season of planting, respectively. The simulated grain yield was between 4.406 and 2.069 kg ha-1 for the 3rd and 4th sowing time, underestimating by 2.0% (3rd SS) and overestimated by 5.1% (4th SS). The overestimation of the 4th season of sowing due to the adjustment of the depth of the root system at 0.75 m, where for the other seasons of sowing depth considered was 0.60 m (MEDEIROS et al., 2008). The AquaCrop model is a tool to predict corn yield of the AL Bandeirante variety. This procedure allows for adequate estimation of grain yield with 18 days prior to harvest in the Agreste region of Alagoas, providing end users of the model program storage, logistics and marketing of grain crop to be harvested. / Fundação de Amparo a Pesquisa do Estado de Alagoas / O milho (Zea mays L.), devido a sua importância na dieta alimentar humana e animal, é uma das culturas mais difundidas no mundo. No Brasil, é cultivado em praticamente todas as regiões, devido a isto, tem sido foco da modelagem agrometeorológica por décadas. O modelo AquaCrop foi utilizado nesse trabalho com o objetivo de simular a produção de biomassa total e diária, produtividade de grãos, bem como obter a previsão de safra do milho para região de Arapiraca, Alagoas. O modelo usa a cobertura do dossel (CD), em vez do índice de área foliar (IAF), como base para calcular separadamente a transpiração das plantas e a evaporação da água do solo. A produtividade é calculada como o produto da biomassa e do índice de colheita (IC). Os dados de entrada do modelo foram de experimento realizado por Medeiros (2008), no povoado Batingas no município de Arapiraca-AL. Para as quatro épocas de semeio, os resultados do armazenamento de água no solo simulados pelo modelo AquaCrop apresentaram tendência de variação similar aos valores observados. Porém, para terceira época de semeadura o armazenamento observado apresentou valor máximo (171,66 mm) aos 35 DAE, enquanto que o valor máximo simulado (115,0 mm) ocorreu aos 24 DAE. Para a produção de biomassa final (kg ha-1) os valores máximos e mínimos observados (simulados) variaram entre 13.059 (11.861) e 9.873 (8.306) para 3ª e 4ª época de semeadura, respectivamente. A produtividade de grãos simulada foi entre 4.406 e 2.069 kg ha-1, para a 3ª e 4ª época de semeadura, subestimando em 2,0% (3ª ES) e superestimando em 5,1 % (4ª ES). A superestimativa da 4ª época de semeadura deve-se ao ajustamento da profundidade do sistema radicular em 0,75 m, em que para as demais épocas de semeadura a profundidade considerada foi 0,60 m (MEDEIROS et al., 2008). O modelo AquaCrop é uma ferramenta para previsão da produtividade de milho da variedade AL Bandeirante. Esse procedimento permite obter adequada estimativa do rendimento de grãos com 18 dias de antecedência à colheita na região do Agreste Alagoano, disponibilizando aos usuários finais do modelo programar o armazenamento, logística e comercialização da safra de grãos a ser colhida.
2

APLICAÇÃO DO SENSORIAMENTO REMOTO COMO APOIO À OBTENÇÃO DE CRITÉRIOS PARA A PREVISÃO DE SAFRAS DE UVAS NA SERRA GAÚCHA, BRASIL / APLICACIÓN DE PERCEPCIÓN REMOTA COMO APOYO PARA LA PREDICCIÓN DE SAFRA DE UVAS EN SIERRA GAUCHE, BRASIL

Maciel, Erick de Melo 07 April 2009 (has links)
Este trabajo tiene como objetivo aplicar las técnicas de teledetección en la predicción de las cosechas de uva, en una zona previamente delineadas para el estudio piloto, en el Valle de los Viñedos, Sierra Gaucho, con el objetivo de verificar el uso de esta tecnología para la vigilancia y el control de expediente vino en relación con el volumen de la biomasa y de instrumentación para la construcción de un sistema de toma de decisiones en la gestión de los viñedos. Los datos para el desarrollo del trabajo se planteó en el Ayuntamiento de Bento Gonçalves / RS y Embrapa Uva y Vino, que cuenta con imágenes de la región de interés, Valle de los viñedos. Imágenes IKONOS y se Quickbird. Debido a la gran área del Valle de los Viñedos y hay muy pocos datos sobre el viñedo para la utilización de la teledetección, elegimos una zona de viñedos de Embrapa Uva y Vino, que se encuentra dentro del Valle de los Viñedos. Se utilizó el índice de la vegetación de diferencia normalizada (NDVI) para evaluar el efecto de los viñedos. El análisis de la clasificación de las imágenes permitió la identificación de áreas de vegetación existente en las dos imágenes, y el método aplicado MAXVER para realizar la clasificación. La confusión matriz se utiliza para evaluar los resultados de la clasificación. Quickbird para la imagen clasificada, indica un porcentaje de 82,74% para la clase viñedos, una precisión del 84,9587% y el coeficiente de Kappa fue 0,7648, lo que indica que la clasificación fue muy bueno. Clasificados para la imagen IKONOS fue 79,75% para la clase viñedos, precisión 80, 4188% y el coeficiente de Kappa de 0,7161, lo que indica que la clasificación fue muy bueno. La imagen NDVI se obtuvo sólo a través de la imagen IKONOS, que permitió la confirmación de la clasificación en el Quickbird imagen. Se constató que en 2000 la cantidad de uva producida es mucho mayor que en el año 2008 porque esta vez hubo una disminución en la superficie plantada en la viña analizados. El análisis de la aplicación de la teledetección en la predicción de cosecha de la uva permite el seguimiento de acciones de apoyo a la agricultura para la viticultura, con el fin de aprovechar al máximo, mediante la planificación y la zonificación de las áreas de plantación, el uso de la tierra y los recursos e insumos para cultura. La metodología permite obtener información sobre los ámbitos de la planta utilizada y las características de los objetivos y sus relaciones espaciales. / Este trabalho tem por finalidade aplicar técnicas de sensoriamento remoto na previsão de safras de uvas, em área previamente delimitada, para estudo piloto, na Região do Vale dos Vinhedos, na Serra Gaúcha, buscando verificar a utilização desta tecnologia para o monitoramento e controle dos dosséis vitícolas em relação ao volume de biomassa e instrumentalização para a construção de um sistema de tomada de decisão no manejo dos vinhedos. Os dados para o desenvolvimento do trabalho foi levantado junto à Prefeitura de Bento Gonçalves/RS e à Embrapa Uva e Vinho, das quais se conseguiu imagens da região de interesse, Vale dos Vinhedos. As imagens obtidas foram IKONOS e QUICKBIRD. Devido à grande área do Vale dos Vinhedos e a existência de muito pouco dado sobre os vinhedos para o uso de sensoriamento remoto, optou-se por uma área de vinhedos da Embrapa Uva e Vinho, que está dentro dos limites do Vale dos Vinhedos. Foi utilizado o Índice de vegetação da diferença normalizada (NDVI) para a avaliação do vigor dos vinhedos. A análise da classificação das imagens possibilitou à identificação de áreas de vigor vegetal em ambas as imagens usadas, sendo o método MAXVER aplicado para a realização da classificação. A matriz de confusão é utilizada para avaliar o resultado da classificação. Para a imagem QUICKBIRD classificada, indica uma porcentagem de 82,74% para a classe vinhedo, acurácia de 84,9587% e coeficiente Kappa foi de 0,7648, indicando que a classificação foi muito boa. Para a imagem IKONOS classificada, foi de 79,75% para a classe vinhedo, acurácia de 80, 4188% e coeficiente Kappa de 0,7161, indicando que a classificação foi muito boa. A imagem NDVI somente foi obtida através da imagem IKONOS, o que possibilitou a confirmação da classificação em relação à imagem QUICKBIRD. Verificou-se que no ano de 2000 a quantidade de uvas produzidas foi muito maior que no ano de 2008, pois nesta data houve diminuição de área plantada na área do vinhedo analisado. A análise da aplicação do sensoriamento remoto na previsão de safras de uvas possibilita subsidiar ações de monitoramento agrícola para a viticultura, de modo a maximizar, por meio do planejamento e zoneamento das áreas de plantio, o uso do solo e de recursos e insumos para a cultura. A metodologia utilizada possibilitou a obtenção de informações a respeito das áreas de plantio utilizadas e as características dos alvos e suas relações espaciais.
3

Modelos de simulação da cultura do milho - uso na determinação das quebras de produtividade (Yield Gaps) e na previsão de safra da cultura no Brasil / Maize simulation models - use to determine yield gaps and yield forecasting in Brazil

Duarte, Yury Catalani Nepomuceno 18 January 2018 (has links)
Sendo o cereal mais produzido no mundo e em larga expansão, os sistemas de produção de milho são altamente complexos e sua produção é diretamente dependente de fatores ligados tanto ao clima local quanto ao manejo da cultura. Para auxiliar na determinação tanto dos patamares produtivos de milho quanto quantificar o impacto causado por condições adversas tanto de clima quanto de manejo, pode-se lançar mão do uso de modelos de simulação de culturas. Para que os modelos possam ser devidamente aplicados, uma base solida de dados meteorológicos deve ser consistida, a fim de alimentar esses modelos. Nesse sentido, o presente estudo teve como objetivos: i) avaliar dois sistemas de obtenção de dados meteorológicos, o NASA-POWER e o DailyGridded, comparando-os com dados medidos em estações de solo; ii) calibrar, testar e combinar os modelos de simulação MZA-FAO, CSM DSSAT Ceres-Maize e APSIM-Maize, a fim de estimar as produtividades potenciais e atingíveis do milho no Brasil; iii) avaliar o impacto na produtividade causado pelo posicionamento da semeadura em diferentes tipos de solo; iv) desenvolver e avaliar um sistema de previsão de safra baseado em modelos de simulação; v) mapear as produtividades potencial, atingível e real do milho no Brasil, identificando regiões mais aptas ao cultivo e vi) determinar e mapear as quebras de produtividade, ou yield gaps (YG) da cultura do milho no Brasil. Comparando os dados climáticos dos sistemas em ponto de grade com os dados de estações meteorológicas de superfície, na escala diária, encontrou-se boa correlação entre as variáveis meteorológicas, inclusive para a chuva, com R2 da ordem de 0,58 e índice d = 0,85. O desempenho da combinação dos modelos ao final da calibração e ajuste se mostrou superior ao desempenho dos modelos individuais, com erros absolutos médios relativamente baixos (EAM = 627 kg ha-1) e com boa precisão (R2 = 0,62) e ótima acurácia (d = 1,00). Durante a avaliação da influência das épocas de semeadura e do tipo de solo no patamar produtivo do milho, observou-se que esse varia de acordo com a região estudada e apresenta seus valores máximos e com menores riscos à produção quando a semeaduras coincidem com o início do período de chuvas do local. O sistema de previsão de safra, baseado em modelos de simulação de cultura teve seu melhor desempenho simulando produtividades de milho semeados no início da safra e no final da safrinha, sendo capaz de prever de forma satisfatória a produtividade com até 25 dias antes da colheita. Para o estudo dos YGs, 152 locais foram avaliados e suas produtividades potenciais e atingíveis foram comparadas às produtividades reais, obtidas junto ao IBGE. Os maiores YGs referentes ao déficit hídrico se deram em solos arenosos e durante os meses de outono e inverno, usualmente mais secos na maioria das regiões brasileiras, atingindo valores de quebra superiores a 12000 kg ha-1. Quanto ao YG causado pelo manejo, esse foi maior nas regiões menos tecnificadas, como na região Norte e na Nordeste, apresentando valores superiores a 6000 kg ha-1. Já as regiões mais tecnificadas e tradicionais na produção de milho, como a região Sul e a Centro-Oeste, os YGs referentes ao manejo foram inferiores a 3500 kg ha-1 na maioria dos casos. / Maize is the most important cereal cultivated in the world, being its production system very complex and its productivity directly affected by climatic and crop management factors. In order to quantify the impacts caused by water and crop management deficits on maize yield, the use of crop simulation models is very useful. For properly apply these models, a solid basis of meteorological data is required. In this sense, the present study had as objectives: i) to evaluate two meteorological gridded data, NASA-POWER and DailyGridded, by comparing them with measured data from surface stations; (ii) to calibrate, evaluate and combine the MZA-FAO, CSM DSSAT Ceres-Maize and APSIM-Maize simulation models to estimate the maize potential and attainable yields in Brazil; iii) to evaluate the impact caused by the different sowing dates and soil types on maize yield; iv) to develop and evaluate a crop forecasting system based on crop simulation models and climatological data; v) to map the potential and the attainable maize yields in Brazil, identifying the most suitable regions for cultivation, and vi) to determine and map maize yields and yield gaps (YG) in Brazil. Comparing the gridded climatic data with observed ones, on a daily basis, a good agreement was found for all weather variables, including rainfall, with R2 = 0.58 and d = 0,85. The performances of the combination of the models at the end of the calibration and evaluation phases were better than those obtained with the individual models, with relatively low mean absolute error (EAM = 627 kg ha-1) and with good precision (R2 = 0.62) and accuracy (d = 1.00). During the evaluation of different sowing dates and soil types on maize yield, it was observed that this variable depends on the region and presents the maximum values and, consequently, the minimum risk during the sowings in the beginning of the rainy season of each site. The crop forecasting system, based on crop simulation models, had its best performance for simulating maize yields when the sowings were performed at the beginning of the main season and at the end of the second season, when it was able to predict yield satisfactorily 25 days before harvest. For the YG analysis, 152 sites were assessed and their potential and attainable yields were compared to the actual yields reported by IBGE. The highest YGs caused by water deficit occurred for sandy soils and during the autumn and winter months, usually dry in most of Brazilian regions, reaching values above 12000 kg ha-1. For YG caused by crop management, the values were higher in the less technified regions, such as in the North and Northeast regions, with values above 6000 kg ha-1. In contrast, more traditional maize production regions, such as the South and Center-West, presented YG caused by crop management, lower than 3500 kg ha-1 in most cases.
4

Métodos alternativos de previsão de safras agrícolas / Alternative Crop Prediction Methods

Miquelluti, Daniel Lima 23 January 2015 (has links)
O setor agrícola é, historicamente, um dos pilares da economia brasileira, e apesar de ter sua importância diminuída com o desenvolvimento do setor industrial e de serviços ainda é responsável por dar dinamismo econômico ao país, bem como garantir a segurança alimentar, auxiliar no controle da inflação e na formação de reservas monetárias. Neste contexto as safras agrícolas exercem grande influência no comportamento do setor e equilíbrio no mercado agrícola. Foram desenvolvidas diversas metodologias de previsão de safra, sendo em sua maioria modelos de simulação de crescimento. Entretanto, recentemente os modelos estatísticos vem sendo utilizados mais comumente devido às suas predições mais rápidas em períodos anteriores à colheita. No presente trabalho foram avaliadas duas destas metodologias, os modelos ARIMA e os Modelos Lineares Dinâmicos (MLD), sendo utilizada tanto a inferência clássica quanto a bayesiana. A avaliação das metodologias deu-se por meio da análise das previsões dos modelos, bem como da facilidade de implementação e poder computacional necessário. As metodologias foram aplicadas a dados de produção de soja para o município de Mamborê-PR, no período de 1980 a 2013, sendo área plantada (ha) e precipitação acumulada (mm) variáveis auxiliares nos modelos de regressão dinâmica. Observou-se que o modelo ARIMA (2,1,0) reparametrizado na forma de um MLD e estimado por meio de máxima verossimilhança, gerou melhores previsões do que aquelas obtidas com o modelo ARIMA(2,1,0) não reparametrizado. / The agriculture is, historically, one of Brazil\'s economic pillars, and despite having it\'s importance diminished with the development of the industry and services it still is responsible for giving dynamism to the country inland\'s economy, ensuring food security, controlling inflation and assisting in the formation of monetary reserves. In this context the agricultural crops exercise great influence in the behaviour of the sector and agricultural market balance. Diverse crop forecast methods were developed, most of them being growth simulation models, however, recently the statistical models are being used due to its capability of forecasting early when compared to the other models. In the present thesis two of these methologies were evaluated, ARIMA and Dynamic Linear Models, utilizing both classical and bayesian inference. The forecast accuracy, difficulties in the implementation and computational power were some of the caracteristics utilized to assess model efficiency. The methodologies were applied to Soy production data of Mamborê-PR, in the 1980-2013 period, also noting that planted area (ha) and cumulative precipitation (mm) were auxiliary variables in the dynamic regression. The ARIMA(2,1,0) reparametrized in the DLM form and adjusted through maximum likelihood generated the best forecasts, folowed by the ARIMA(2,1,0) without reparametrization.
5

Estimativa do número de frutos verdes em laranjeiras com o uso de imagens digitais / Estimation of the number of green fruits in orange trees using digital images

Maldonado Júnior, Walter [UNESP] 22 February 2016 (has links)
Submitted by WALTER MALDONADO JÚNIOR null (walter@rainformatica.com.br) on 2016-03-29T21:27:14Z No. of bitstreams: 1 principal.pdf: 75187969 bytes, checksum: ed5b4271338552ed5f58e72f73d7073d (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-03-30T11:37:55Z (GMT) No. of bitstreams: 1 maldonadojunior_w_dr_jabo.pdf: 75187969 bytes, checksum: ed5b4271338552ed5f58e72f73d7073d (MD5) / Made available in DSpace on 2016-03-30T11:37:55Z (GMT). No. of bitstreams: 1 maldonadojunior_w_dr_jabo.pdf: 75187969 bytes, checksum: ed5b4271338552ed5f58e72f73d7073d (MD5) Previous issue date: 2016-02-22 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A estimativa da produtividade é um fator importante no planejamento de um processo produtivo. No caso dos citros, pode colaborar com o gerenciamento do processo industrial e servir como orientação para os produtores, apresentando papel decisivo no mercado do produto e no manejo de tratos culturais. Vários estudos de técnicas para estimativa da produção da cultura vêm sendo realizados mas ainda apresentando limitações. Devido à correlação entre o número de frutos visíveis na imagem de uma planta e o número real de frutos na mesma já apontada em estudos anteriores, foi desenvolvido um método de amostragem automático e não-destrutivo, por meio da extração das características de frutos verdes em imagens digitais. Utilizou-se uma combinação das técnicas de conversão do modelo de cores, limiarização, equalização do histograma de níveis de cinza, filtragem espacial com os operadores de Laplace e Sobel e suavização gaussiana. Além disso, foi desenvolvido e testado um algoritmo para o reconhecimento e contagem dos frutos nessas imagens, com taxas de detecção de falso-positivos de 3\% em imagens de boa qualidade. É possível se estimar a média do número de frutos visíveis por planta com um erro tolerado de 5\% com até 46 imagens e em aproximadamente 8 minutos, sem nenhuma interação humana. A ausência de flash e a incidência de luz solar direta sobre a planta podem prejudicar consideravelmente o desempenho do algoritmo. / Yield estimation is an important factor in a production process planning. In the case of citrus orchards, can be useful for processing plants management and as guidance for farmers, showing a decisive role in the product market strategies and cultivation practices. Several techniques are being studied for estimating citrus crop yield, but still presenting significant limitations. On the basis of the known correlation between the number of visible fruits in a digital image and the total of fruits present in an orange tree, an automatic and non-destructive method for green fruit feature extraction was developed with a combination of the techniques of color model conversion, thresholding, histogram equalization, spatial filtering with Laplace and Sobel operators and gaussian blur. In addition, we built and tested an algorithm to recognize and count the fruits, with detection rates of false-positives of 3\% for images acquired in good conditions. It is possible to estimate the mean number of visible fruits in the trees within a tolerated error of 5\% with up to 46 images and taking approximately 8 minutes without any human interaction. The absence of flash light or the direct incidence of solar light on the plant can significantly detract the algorithm results. / CNPq: 140600/2013-2
6

Modelos de simulação da cultura do milho - uso na determinação das quebras de produtividade (Yield Gaps) e na previsão de safra da cultura no Brasil / Maize simulation models - use to determine yield gaps and yield forecasting in Brazil

Yury Catalani Nepomuceno Duarte 18 January 2018 (has links)
Sendo o cereal mais produzido no mundo e em larga expansão, os sistemas de produção de milho são altamente complexos e sua produção é diretamente dependente de fatores ligados tanto ao clima local quanto ao manejo da cultura. Para auxiliar na determinação tanto dos patamares produtivos de milho quanto quantificar o impacto causado por condições adversas tanto de clima quanto de manejo, pode-se lançar mão do uso de modelos de simulação de culturas. Para que os modelos possam ser devidamente aplicados, uma base solida de dados meteorológicos deve ser consistida, a fim de alimentar esses modelos. Nesse sentido, o presente estudo teve como objetivos: i) avaliar dois sistemas de obtenção de dados meteorológicos, o NASA-POWER e o DailyGridded, comparando-os com dados medidos em estações de solo; ii) calibrar, testar e combinar os modelos de simulação MZA-FAO, CSM DSSAT Ceres-Maize e APSIM-Maize, a fim de estimar as produtividades potenciais e atingíveis do milho no Brasil; iii) avaliar o impacto na produtividade causado pelo posicionamento da semeadura em diferentes tipos de solo; iv) desenvolver e avaliar um sistema de previsão de safra baseado em modelos de simulação; v) mapear as produtividades potencial, atingível e real do milho no Brasil, identificando regiões mais aptas ao cultivo e vi) determinar e mapear as quebras de produtividade, ou yield gaps (YG) da cultura do milho no Brasil. Comparando os dados climáticos dos sistemas em ponto de grade com os dados de estações meteorológicas de superfície, na escala diária, encontrou-se boa correlação entre as variáveis meteorológicas, inclusive para a chuva, com R2 da ordem de 0,58 e índice d = 0,85. O desempenho da combinação dos modelos ao final da calibração e ajuste se mostrou superior ao desempenho dos modelos individuais, com erros absolutos médios relativamente baixos (EAM = 627 kg ha-1) e com boa precisão (R2 = 0,62) e ótima acurácia (d = 1,00). Durante a avaliação da influência das épocas de semeadura e do tipo de solo no patamar produtivo do milho, observou-se que esse varia de acordo com a região estudada e apresenta seus valores máximos e com menores riscos à produção quando a semeaduras coincidem com o início do período de chuvas do local. O sistema de previsão de safra, baseado em modelos de simulação de cultura teve seu melhor desempenho simulando produtividades de milho semeados no início da safra e no final da safrinha, sendo capaz de prever de forma satisfatória a produtividade com até 25 dias antes da colheita. Para o estudo dos YGs, 152 locais foram avaliados e suas produtividades potenciais e atingíveis foram comparadas às produtividades reais, obtidas junto ao IBGE. Os maiores YGs referentes ao déficit hídrico se deram em solos arenosos e durante os meses de outono e inverno, usualmente mais secos na maioria das regiões brasileiras, atingindo valores de quebra superiores a 12000 kg ha-1. Quanto ao YG causado pelo manejo, esse foi maior nas regiões menos tecnificadas, como na região Norte e na Nordeste, apresentando valores superiores a 6000 kg ha-1. Já as regiões mais tecnificadas e tradicionais na produção de milho, como a região Sul e a Centro-Oeste, os YGs referentes ao manejo foram inferiores a 3500 kg ha-1 na maioria dos casos. / Maize is the most important cereal cultivated in the world, being its production system very complex and its productivity directly affected by climatic and crop management factors. In order to quantify the impacts caused by water and crop management deficits on maize yield, the use of crop simulation models is very useful. For properly apply these models, a solid basis of meteorological data is required. In this sense, the present study had as objectives: i) to evaluate two meteorological gridded data, NASA-POWER and DailyGridded, by comparing them with measured data from surface stations; (ii) to calibrate, evaluate and combine the MZA-FAO, CSM DSSAT Ceres-Maize and APSIM-Maize simulation models to estimate the maize potential and attainable yields in Brazil; iii) to evaluate the impact caused by the different sowing dates and soil types on maize yield; iv) to develop and evaluate a crop forecasting system based on crop simulation models and climatological data; v) to map the potential and the attainable maize yields in Brazil, identifying the most suitable regions for cultivation, and vi) to determine and map maize yields and yield gaps (YG) in Brazil. Comparing the gridded climatic data with observed ones, on a daily basis, a good agreement was found for all weather variables, including rainfall, with R2 = 0.58 and d = 0,85. The performances of the combination of the models at the end of the calibration and evaluation phases were better than those obtained with the individual models, with relatively low mean absolute error (EAM = 627 kg ha-1) and with good precision (R2 = 0.62) and accuracy (d = 1.00). During the evaluation of different sowing dates and soil types on maize yield, it was observed that this variable depends on the region and presents the maximum values and, consequently, the minimum risk during the sowings in the beginning of the rainy season of each site. The crop forecasting system, based on crop simulation models, had its best performance for simulating maize yields when the sowings were performed at the beginning of the main season and at the end of the second season, when it was able to predict yield satisfactorily 25 days before harvest. For the YG analysis, 152 sites were assessed and their potential and attainable yields were compared to the actual yields reported by IBGE. The highest YGs caused by water deficit occurred for sandy soils and during the autumn and winter months, usually dry in most of Brazilian regions, reaching values above 12000 kg ha-1. For YG caused by crop management, the values were higher in the less technified regions, such as in the North and Northeast regions, with values above 6000 kg ha-1. In contrast, more traditional maize production regions, such as the South and Center-West, presented YG caused by crop management, lower than 3500 kg ha-1 in most cases.
7

Métodos alternativos de previsão de safras agrícolas / Alternative Crop Prediction Methods

Daniel Lima Miquelluti 23 January 2015 (has links)
O setor agrícola é, historicamente, um dos pilares da economia brasileira, e apesar de ter sua importância diminuída com o desenvolvimento do setor industrial e de serviços ainda é responsável por dar dinamismo econômico ao país, bem como garantir a segurança alimentar, auxiliar no controle da inflação e na formação de reservas monetárias. Neste contexto as safras agrícolas exercem grande influência no comportamento do setor e equilíbrio no mercado agrícola. Foram desenvolvidas diversas metodologias de previsão de safra, sendo em sua maioria modelos de simulação de crescimento. Entretanto, recentemente os modelos estatísticos vem sendo utilizados mais comumente devido às suas predições mais rápidas em períodos anteriores à colheita. No presente trabalho foram avaliadas duas destas metodologias, os modelos ARIMA e os Modelos Lineares Dinâmicos (MLD), sendo utilizada tanto a inferência clássica quanto a bayesiana. A avaliação das metodologias deu-se por meio da análise das previsões dos modelos, bem como da facilidade de implementação e poder computacional necessário. As metodologias foram aplicadas a dados de produção de soja para o município de Mamborê-PR, no período de 1980 a 2013, sendo área plantada (ha) e precipitação acumulada (mm) variáveis auxiliares nos modelos de regressão dinâmica. Observou-se que o modelo ARIMA (2,1,0) reparametrizado na forma de um MLD e estimado por meio de máxima verossimilhança, gerou melhores previsões do que aquelas obtidas com o modelo ARIMA(2,1,0) não reparametrizado. / The agriculture is, historically, one of Brazil\'s economic pillars, and despite having it\'s importance diminished with the development of the industry and services it still is responsible for giving dynamism to the country inland\'s economy, ensuring food security, controlling inflation and assisting in the formation of monetary reserves. In this context the agricultural crops exercise great influence in the behaviour of the sector and agricultural market balance. Diverse crop forecast methods were developed, most of them being growth simulation models, however, recently the statistical models are being used due to its capability of forecasting early when compared to the other models. In the present thesis two of these methologies were evaluated, ARIMA and Dynamic Linear Models, utilizing both classical and bayesian inference. The forecast accuracy, difficulties in the implementation and computational power were some of the caracteristics utilized to assess model efficiency. The methodologies were applied to Soy production data of Mamborê-PR, in the 1980-2013 period, also noting that planted area (ha) and cumulative precipitation (mm) were auxiliary variables in the dynamic regression. The ARIMA(2,1,0) reparametrized in the DLM form and adjusted through maximum likelihood generated the best forecasts, folowed by the ARIMA(2,1,0) without reparametrization.

Page generated in 0.0561 seconds