• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Diversity of rhizobia nodulating Phaseolus vulgaris and Phaseolus coccineus in South Africa

Lindeque, Michelle Irene 15 March 2007 (has links)
The association between root-nodulating bacteria and leguminous plants is advantageous due to their ability to alter atmospheric nitrogen into a useful form in a process known as biological nitrogen fixation (BNF). Research has shown that BNF is the most efficient way to supply the large amounts of nitrogen needed by plants to produce high-yielding crops. As a result, there have been numerous studies into the diversity and identity of the associated nitrogen-fixing bacterial symbionts. Recent advances in molecular microbiology together with the isolation of rhizobia from previously uninvestigated legumes have led to major revisions of rhizobial taxonomy, most notably the inclusion of bacteria from the ß-Proteobacteria in the genera Burkholderia and Ralstonia. In this study, the diversity of root nodule bacteria associated with Phaseolus coccineus and Phaseolus vulgaris species in South Africa was investigated. A selection of rhizobial isolates were characterised by SDS-PAGE of whole cell proteins and rep-PCR DNA fingerprint analyses. These results were supplemented by partial 16S rDNA sequencing of a select number of isolates to confirm their identity. Where isolates displayed unexpected genus associations, partial nodA sequencing was performed to determine whether these were incidental contaminants or true nodulators. Based on 16S rDNA sequence analysis, the majority of isolates investigated were fast-growers belonging to the genus Rhizobium. A few isolates showed close relationship to species of the ß-Proteobacteria genus, Burkholderia. Both the SDS-PAGE analyses and the combined rep-PCR analyses were able to resolve isolates down to strain level, but the comparison of the SDS-PAGE and 16S rDNA sequencing data confirmed that bacterial discrimination using SDS-PAGE is not useful at the genus level and higher, as isolates showing affinity to Burkholderia were mingled with isolates showing similarity to Rhizobium. These isolates were separate from the Rhizobium isolates in the combined rep-PCR dendrogram. While there were discrepancies between results obtained from SDS-PAGE and rep-PCR analyses, results from the combined rep-PCR analysis correlated with many of the results obtained in the SDS-PAGE analysis. Both geographic location and host plant species appear to have affected the grouping of isolates. Many clusters consisted of isolates from the same location or the same host plant species in both the SDS-PAGE dendrogram as well as the combined rep-PCR dendrogram. The nodA sequencing demonstrated that the majority of isolates tested contain the nodA gene indicating that they are capable of nodulation. There was a large strain diversity observed for the isolates of this study and a number of the root-nodulating bacteria of the Phaseolus spp. appear to constitute several novel nodulating genotypes. / Dissertation (MSc (Microbiology))--University of Pretoria, 2007. / Microbiology and Plant Pathology / unrestricted
32

Influence of treating corn stover and sorghum forage with different nitrogen sources on nutritive value for ruminants

Ali, Iftikhar 19 October 2005 (has links)
Experiments were conducted to determine: 1) the fermentation characteristics and in vitro dry matter digestibility (IVDMD) of corn (<i>Zea mays</i>) stover treated with different sources of N; 2) digestibility, N utilization and palatabi1ity in sheep fed corn stover treated with different N sources; and 3) fermentation characteristics and nutrient utilization by sheep of sorghum (<i>Sorghum bicolor</i> L., Moench) forage treated with urea an poultry litter. In a small silo study, corn stover was ensiled untreated or after treatment with 3% aqueous NH₃, 50% and 75% poultry litter, 5.8% urea alone or with 10% cattle waste, 1.5% urease powder or 5% soybeans (<i>Glycine max</i>), DM basis. All treatments resulted in substantial increases (P < .01) in CP of corn stover. Lactic acid was detected in substantial levels only in the stover which was untreated and treated with 50% poultry litter. Ammonia and urea treatments decreased NDF content of stover by 4 to 7 percentage units. Increases (P < .01) of IVDMD of 9 to 14 percentage units resulted from treatment with NH₃ or urea. Use of urease sources did not enhance IVDMD. / Ph. D.
33

Nitrogen utilization in tall fescue (Festuca arundinacea Schreb.) pastures fertilized with nitrogen or grown with alfalfa (Medicago sativa L.) or red clover (Trifolium pratense L.)

Absher, Karen Lynne 01 August 2012 (has links)
Use of legumes as an alternative to nitrogen (N) fertilization in pasture management improves forage quality and animal performance and has been suggested to reduce the potential for environmental pollution. "Kentucky 3l" tall fescue fertilized with 160 kg N ha-1 yr-1 (split application) was compared to tall fescue grown with alfalfa or red clover in a 5-yr pasture experiment on a mixed Typic Hapludult. During yr 6, effects of N fertilization or the legume on soil N, forage N concentration, yield, botanical composition, N intake by esophageally fistulated steers grazing the pastures and N utilization by wethers fed the harvested forages were investigated. Soil ammonium was higher (P ≤ .01) in the A and B horizons in the tall fescue-red clover pastures compared to the other treatments and nitrate was lower (P ≤ .05) in the A horizon, but concentrations differed (P ≤ .01) by date. Nitrate in the A horizon averaged 2.65, 1.38 and 2.21 ppm for tall fescue-N, tall fescue-red clover and tall fescue-alfalfa, respectively. In the B horizon, average soil NO3 was .43, .23 and .53 ppm for tall fescueâ N, tall fescue-red clover and tall fescue-alfalfa, respectively. Tall fescue-alfalfa pastures were higher (P ≤ .01) in percentage legume than tall fescue-red clover, overall, but differed by date (P ≤ .01). Alfalfa was generally higher (P ≤ .05) in N concentration than red clover. Total kg N accumulated ha⁻¹ in above-ground herbage was higher (P≤ .05) for the grass-legume mixtures than N-fertilized tall fescue. Esophageally fistulated steers grazing stockpiled tall fescue-alfalfa selected forage higher (P ≤ .05) in N concentration than steers grazing the other pastures. Stockpiled tall fescue-alfalfa fed to wethers in a metabolism trial was higher (P ≤ .01) in N concentration, dry matter digestibility (DMD), apparent N absorption, and N retention than the other treatments. All treatments differed, with wethers fed tall fescue-red clover having the lowest DMD, apparent N absorption and N retention. Wethers fed tall fescue-alfalfa and tall fescue-red clover had higher blood urea N then those fed tall fescue-N. Results of this research demonstrate that soil NO₃ concentrations were low for all three forage treatments and would not contribute to ground water contamination. Legumes supplied adequate N to achieve yields similar to tall fescue fertilized with N and increased N production ha⁻¹ in the above ground biomass. Digestibility and utilization of the N in stockpiled tall fescue were improved by inclusion of alfalfa but not red clover. / Master of Science
34

Exploring phosphorus, mucuna (Mucuna pruriens)and nitrogen management options for sustainable maize production in a depleted kaolinitic sandy loam soil of Zimbabwe

Shoko, Munashe 12 1900 (has links)
Thesis (PhD(Agric) (Agronomy))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: Continuous cropping without replenishing the nutrient component of soils will eventually lead to the depletion of soil nutrients. Small scale farmers in Zimbabwe often do not have the financial means to buy fertilizer and this problem is exacerbated by scarcity of commodities such as fertilizers. The use of herbaceous legumes such as mucuna (Mucuna pruriens) can assist to recapitalize soil fertility depletion and improve subsequent maize productivity in sandy loam soils in the small holder farming sector of Zimbabwe. In this study the effect of phosphorus (P) application to a mucuna crop, the effect of mucuna management options and the application of nitrogen (N) to the subsequent maize crop was investigated. The experiment was carried out during the 2007 to 2009 seasons at the Grasslands Research Station in Marondera in Zimbabwe. The soils are classified as humic ferrolsols and are predominantly of the kaolinitic order with sandy loams of low fertility and are slightly acid (pH CaCl = 5.2). A randomized complete block design was used for the effect of P on mucuna productivity and the effect of P and mucuna management options on the soil properties. The treatments were two P rates (P0 and P40 = 0 kg P ha-1 and 40 kg P ha-1 respectively) applied to a preceding mucuna crop, four mucuna management options [1) fallow (F) (no mucuna planted = control), 2) mucuna ploughed-in at flowering (MF), 3) all mucuna above ground biomass removed at maturity and only roots were ploughed-in (MAR) and 4) mucuna pods removed and the residues ploughed-in (MPR)]. A split-plot design was used to study the effect of P application to mucuna, mucuna management options and N rates on the growth and yield of the subsequent maize crop. The four N treatments [N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1 and iv N120 = 120 kg N ha-1] were applied to a subsequent maize crop. Growth and development parameters such as biomass production, leaf area index, nutrient content of the foliage and grain yield were determined in the mucuna and maize crops. Soil parameters investigated included nutrient content, pH, bulk density and porosity. Phosphorus application in these particular soil conditions positively influenced mucuna biomass production and therefore enhanced the role of mucuna as a rotational crop by increased positive effects on the subsequent maize crop. The incorporation of above-ground biomass of mucuna had positive effects on all soil properties investigated. The MF and MPR management options increased the soil organic matter (OM) and reduced bulk density which leads to an improvement in porosity (f) of the soil. Mucuna incorporated at flowering (MF) and P40 treatment combination resulted in the highest mineral N, P, potassium (K), calcium (Ca) and magnesium (Mg) levels. A significant three-way interaction (P<0.05) between mucuna management options, nitrogen rates and time was observed in terms of biomass production and all nutrients in the leaves of the subsequent maize crop. The main findings were that the MF management option had the highest biomass and foliar nutrient accumulation through-out all the treatment combinations. In general the MF management option gave the highest maize yield across all the treatment combinations. Incorporation of mucuna biomass into the soil prior to planting a maize crop therefore improve soil physical and chemical qualities resulting in improved soil conditions for a subsequent maize crop which in turn lead to higher maize yields. Including a mucuna rotational crop have a similar effect on maize yield than application of 80 kg ha-1 of fertilizer N. / AFRIKAANSE OPSOMMING: Aanhoudende verbouing van gewasse op dieselfde grond sonder om voedingstowwe aan te vul lei uiteindelik tot die agteruitgang van die grond se vrugbaarheid. Kleinboere in Zimbabwe het meestal nie die finansiële vermoëns om bemestingstowwe te koop nie en die probleem word vererger deur die onbekombaarheid van kommoditeite soos bemestingstowwe. Die gebruik van kruidagtige peulplant gewasse soos mucuna (Mucuna pruriens) kan bydra om grondverarming teen te werk en om die produksie van ‗n daaropvolgende mielie aanplanting in sandleemgronde in ‗n kleinboerstelsel in Zimbabwe te verhoog. In hierdie studie is die invloed van fosfor (P) toediening aan ‗n mucuna aanplanting, die invloed van bestuursopsies van die mucuna en die toediening van stikstof (N) aan die daaropvolgende mielie aanplanting ondersoek. Die eksperiment is tydens die 2007 tot 2009 reënseisoen by die Grasslands Research Station in Marondera in Zimbabwe uitgevoer. Die grond word geklassifiseer as humiese ferrolsols en is hoofsaaklik sanderige leemgrond van die kaolinitiese orde met lae vrugbaarheid en is effens suur (pH CaCl = 5.2). ‘n Volledig ewekansige blokontwerp is gebruik om die invloed van P op die produktiwiteit van mucuna te bepaal asook die invloed van P toediening en mucuna bestuursopsies op grondeienskappe. Die behandelings was twee P vlakke (P0 = 0 kg P ha-1 en P40 = 40 kg P ha-1) wat aan ‗n voorafgaande mucuna aanplanting toegedien is, vier mucuna bestuursopsies [1) braak (F) (geen mucuna geplant = kontrole), 2) mucuna ingeploeg met blomtyd (MF), 3) alle bogrondse mucuna biomassa verwyder by rypwording en slegs wortels ingewerk (MAR) en 4) mucuna peule verwyde en die res van die bogrondse material ingeploeg (MPR)] en vier N behandelings [N0 = 0 kg N ha-1, N40 = 40 kg N ha-1, N80 = 80 kg N ha-1 en N120 = 120 kg N ha-1] toegedien aan ‗n daaropvolgende mielie aanplanting. Groei en ontwikkeling parameters soos biomassa produksie, blaaroppervlakindeks, nutriëntinhoud van die blare en graanopbrengs is in die mucuna en mielie aanplantings ondersoek. Grondeienskappe soos nutriëntinhoud, pH, bulkdigtheid en porositeit is gemeet. Fosfaat toediening aan hierdie spesifieke grondtipe het mucuna produksie positief beïnvloed en dus die rol van mucuna as rotasiegewas verbeter deur positiewe reaksies in die daaropvolgende mielie aanplanting. Die inwerk van bogrondse mucuna biomassa het al die fisiese grondeienskappe wat ondersoek is positief beïnvloed. Die MF en MPR bestuursopsies het organiese materiaal inhoud van die grond verhoog en bulkdigtheid verlaag wat lei tot verbeterde grondporeusheid (f). Mucuna wat tydens blomvorming ingewerk is (MF) lei tot die hoogste minerale N, P, kalium (K), kalsium (Ca) en magnesium (Mg) vlakke. ‗n Betekenisvolle drie-rigting interaksie (P < 0.05) tussen mucuna bestuursopsies, N vlakke en tyd is waargeneem in terme van biomassa produksie en in terme van al die nutriëntvlakke in die mielieblare wat ondersoek is. Die hoofbevindinge was dat die MF bestuursopsie die hoogste biomassa produksie en blaarnutriënt akkumulasie oor alle behandelingskombinasies tot gevolg gehad het. In die algemeen het die MF bestuursopsie die hoogste mielie-opbrengs oor alle behandelingskombinasies tot gevolg gehad. Die inwerk van mucuna materiaal in die grond voordat mielies geplant word verbeter dus fisiese en chemiese toestande in die grond wat grondtoestande verbeter vir die daaropvolgende miegewas en uiteindelik lei tot hoër mielie-oeste. Die insluiting van mucuna as ‘n rotasiegewas het diesefde effek op mielie-opbrengs as die toediening van 80 kg ha-1 N bemesting.
35

Nitrate Use Efficiency In Tobacco Plants Constitutively Expressing A Maize Nitrate Transporter ZmNRT2.1

Unknown Date (has links)
The NRT2 (high affinity nitrate transporter 2) family is a part of the iHATS (inducible high affinity system) that studies have shown is responsible for the influx of nitrate into the plant cell after provision of nitrate. The ZmNRT2.1 from Zea mays was constitutively expressed in Nicotiana tabacum. To assess how over-expression of this foreign NRT2.1 affects nitrate influx by plants, nitrate content in leaf and root tissue, gene expression, and vegetal growth were analyzed in media with deficient or high nitrate concentrations (0.1, 1, or 10 mM). Compared to wild type plants: the transgenic lines had a significantly larger fresh weight in all nitrate conditions; primary root length was significantly longer in the 0.1 and 1 mM nitrate conditions; both the fresh weight and the primary root length were significantly higher when 50 mM NaCl was applied as a stress factor to medias containing 0.1 and 10 mM nitrate. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
36

Development of free-living diazotrophic (FLD) inoculants and their effects on crop growth.

Kifle, Medhin Hadish. January 2008 (has links)
In this study several free-living diazotrophs (FLD) were isolated and screened for their nitrogen fixing ability on a range of crops grown in greenhouse, hydroponics and field trials. Rhizosphere isolates of free-living diazotrophs (FLD) may be effective biofertilizer inoculants, and may improve plant health where crops are grown with little or no fertilizer, as is the case in the Developing World. FLD isolates from rhizospheric soils in KwaZulu-Natal were assessed by growing them on N-free media, which is a key isolation method. They were then evaluated for their nitrogenase activity by quantifying ethylene production from acetylene by gas chromatography (GC). The free living isolates that produced greater quantities of ethylene were detected by an acetylene reduction assay (ARA). These were further assessed for colony formation on N-free media with different carbon sources, and at a range of temperatures (20, 25 and 300C) and pH values (6.0, 7.0 and 8.0). Isolates G3 and L1 were identified using DNA sequencing by Inqaba Biotechnical Industries (Pty) Ltd as Burkholderia ambifaria Coenye et al, and Bacillus cereus Frankland, respectively. These isolates grew significantly better on an ethanol medium, at temperatures of 20, 25 and 300C and pHs of 6.0, 7.0 and 8.0. Isolates B3 (Burkholderia sp.) and D6 (Bacillus cereus Frankland) also grew well on an ethanol medium, but only at 200C and at a pH of 6.0 and 7.0, respectively, while Isolate E9 (Burkholderia cepacia Frankland) grew well on an ethanol medium only at 300C, and pH 6.0 and 7.0. Temperature and pH strongly influence FLD growth on N-free media using different carbon sources. Further trials were conducted to screen the best isolates under greenhouse condition, using both seed treatments and drenching application techniques onto several crops. The drenching application resulted in an increase in the growth and N-total of all the evaluated crops, relative to an unfertilized control. Growth and N-total of maize and sorghum increased with seed treatments, but did not increase the growth of lettuce and zucchini. Drenching of FLD isolates at 106cfu ml-1, applied on weekly basis, resulted in an increase in the growth of lettuce. Increased doses and frequency of application of the FLD bacteria resulted in a decrease in lettuce growth. This led to the conclusion that application of FLD bacteria at high doses and short intervals may create a situation where the applied FLD bacteria and the resident rhizosphere microbes compete for root exudates. High doses at low frequencies and low doses at high frequencies may be more effective on lettuce. Inoculation of Isolate L1 (B. cereus) at 106cfu ml-1 or in combination with Eco-T® (Trichoderma harzianum Rifai), significantly increased growth of lettuce. This result may have been due to nitrogen fixation, or to secretion of growth promoting substances by both the FLD and T. harzianum, and to biocontrol effects of Eco-T®. Application of Isolate L1 (B. cereus) at 106cfu ml-1 with or without Eco-T® was an effective tool for enhancing plant growth and nitrogen fixation. An FLD, Isolate L1 (B. cereus), was applied to lettuce plants together with a complete hydroponics fertilizer at 25% strength (Ocean Agriculture 3:1:3 (38) Complete), with the N level at 25mg l-1. These plants grew significantly better than the control plants grown on 25% of normal NPK fertilization, or with an inoculation of L1 alone. This indicates that it may be possible to integrate FLD applications with the application of low levels of commercial fertilizers, which is what resource poor farmers can afford. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
37

Effects of cover crops-green manure on cabbage yield (Brassica oleracea var.capitata L.) cultivar conquistador.

Mkhathini, Khangelani Maxwell. January 2012 (has links)
Cabbage is one of the most important and widely grown crops in KwaZulu-Natal (KZN). In cabbage production, no clear cropping methods exist (other than succession cropping) to allow the soil to recover its fertility status naturally after the harvested has crop absorbed nutrients from the soil. Succession cropping system is extensively practiced by cabbage farmers. Succession cropping is when a succeeding vegetable crop is planted immediately after harvesting the preceding crop. This does not allow soil fertility status to be balanced by soil microbes in an environmentally friendly approach. Instead, synthetic fertilizers are heavily used to rectify soil fertility status and these have negative impacts on the soil in the long term, followed by yield decline. However, the economic downturns and green environment awareness have caused researchers and some farmers to focus more on developing environmentally healthy crop production technologies. A priority in this study was to elucidate effects of cover crops-green manure as rotational crops in cabbage production. The experimental site is located at Cedara Research Station. In 2009, soil samples were taken from the top 30 cm of the soil profile, in a zigzag pattern in 5 m x 5 m grids for fertility analysis. Results were used to determine nutrient deficiencies, and blanket application of phosphorus and potassium followed according to each grid’s deficiency. The study was divided into two cycles, with each cycle consisting of season one and season two. The study was conducted over a two year period. Cycle one, season one, 2009/2010 (Dec-Mar): four treatments (sunn hemp: planted at 50 kg/ha seeding rate; forage sorghum: planted at 50 kg/ha seeding rate; mixture of sunn hemp-forage sorghum: each planted at 25 kg/ha seeding rate and control: cabbage planted at 30 cm within rows x 60 cm between rows) were used. The statistical design of the study was a 4x4 Latin Square experiment repeated twice in adjacent fields (347 m2 each) 6 m apart, with a total of 32 plots. Each experimental plot was 8.5 m x 9 m. Genstat Package, 9th Edition was used for data analysis. Standard cabbage production recommendations were followed in control treatments. Cabbage yield was determined in all control plots. Weed coverage percentages were determined in all four treatments. Cycle one, season two, 2010, (Apr-Aug): all 32 plots from season one were each split into four, in a Split Plot design, resulting in a total of 128 plots in both fields. Nitrogen was applied at four different levels: 0, 80, 160 and 240 kg N/ha. Standard cabbage production methods were followed again as in the control treatment in season one. Cover crops were replaced by planting cabbage. Cabbage was repeated in the control plots. Cabbage yield, cabbage leaf nutrients, soil nitrate and ammonium nitrate and soil carbon to nitrogen (C:N) ratio were measured. Cycle two, season one, 2010 (Sep-Dec): The same method in cycle one, season one was repeated. Cycle two, season two, 2010/2011, (Dec-Apr): The same method in cycle one, season two was repeated. Although in this study there was visibly a large amount of residues left over after the trial was harvested, the use of a tractor-drawn slasher was not very effective. The slashed material was not chopped into smaller pieces, as it would if a roll-chopper had been used. A tractor-drawn slasher was used because it is a tool available to many farmers. As a result, it was not a simple process to transplant seedlings mechanically, due to the amount of organic matter that was in the soil after it had been incorporated. The mechanical planter pulled off, removed and became blocked by the residues, and as a result it was not able to operate as it would in normal soils. The residues removed soil from the furrows and that caused seedlings to fall over as all the soil for the root system support had been moved by the planter and stuck residues. The planter had to be assisted by hand planting seedlings that were not properly planted mechanically. Hence, from the operational perspective, the choice of tools for chopping were not effective in this study and this is something to be considered in future studies, where it will be necessary to compare different tools for planting and cover crop incorporation into the soil. During the present study, soil N content in different plots had significant differences (P=0.05). The control showed high levels of total N content, but this was not related to the low yields exhibited by cabbage after cabbage at all levels of N. Since, where there were cover crops, the N content was low, this could mean that N was immobilized, compared to the cabbage treatments where plenty of N was available. Immobilized N is thus not available for leaching, polluting the environment. The yield of cabbage was significantly lowest in controls. The study showed that cover crop-green manure use has a positive effect in terms of yield improvement. The cabbage yields from the sunn hemp plots at a 0 kgN/ha were significantly different from the yield of cabbage planted following cabbage at 240 kgN/ha N. The study also showed that N is not the only yield determinant in cabbage production. Too much N has a tendency to suppress cabbage yields. The cover crop-green manures selected for this study were shown to be ineffective in suppressing weeds. This was true even though the weed coverage percentage in each of the cover crop-green manure plots was above 65%, except for the cabbage crop. This study did not separate different weeds, but the most dominant weeds were Amaranthus hybridus (pigweed), Galinsoga parviflora (gallant soldier), Bidens pilosa (common blackjack) and Cyperus esculentus (yellow nutsedge). These weeds were effectively controlled in the cabbage sole crop by the use of herbicides and mechanical weeding. The result of cover crop-green manures not suppressing weeds was significantly associated with the cover crop-green manure seeding rate. This study has been a starting point in the development of cover crops-green manure as rotational crops in cabbage production. It is concluded that cover crop-green manure (sunn hemp and forage sorghum) used in this study for vegetable (cabbage) production has proven to be successful in improving yields. Yields obtained from cover crop-green manure treatments were better than yields obtained from - conventional tillage methods for cabbage production (control). However, in cabbage, weed suppression and soil N content, failed to improve significantly in response to the cover crop green manures used. The high plant population density under a cover crop, combined with weed population, may lead to high uptake of soil N for plant growth, leaving less N in the soil and in the plant. In the sole cabbage crop, because of low competition, there was adequate uptake of N for plant growth and yet the crop was not exhaustive of soil N. Further research is required in the following areas: comparison of cabbage with other vegetable crops in response to the effect of the selected cover crops; comparison of mechanical weeding and herbicide use as means of controlling weeds during cover crop-green manure growth; identification of dominant weeds in the presence and absence of cover crops, and monitoring of soil water relations and other fertiliser effects. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
38

Stikstofomsettinge in gronde met spesiale verwysing na lupine as bron van stikstof vir boorde en wingerde

Fourie, S. 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 1955. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
39

Nitrogen management strategies on perennial ryegrass-white clover pastures in the Western Cape Province

Labuschagne, Johan 03 1900 (has links)
Thesis (PhD(Agric) (Agronomy))--University of Stellenbosch, 2005. / The response of perennial ryegrass and white clover, grown under controlled conditions, to fertiliser N rates applied under variable soil temperature (6, 12 and 18 °C), soil water potential (-10, -20, -25 and -35 kPa) and seasonal growing (June/July and October/November) conditions as well as field conditions, were evaluated. Primary- (PDM), residual- (RDM) and total dry matter (TDM) production (g pot-1) were recorded over the first- and second regrowth cycles as well as the accumulative DM production over the two regrowth cycles, respectively. Leaf N content (%) was recorded at the end of first and second regrowth cycles. Tiller/stolon numbers and root dry mass (g pot-1) were recorded at the end of the second regrowth cycle. Soil ammonium-N and nitrate-N (mg kg-1) content was monitored after fertiliser N application. Decreasing soil temperatures resulted in decreased TDM production in both crops. Only perennial ryegrass was influenced by fertiliser N rate, with a general increase in dry matter production as fertiliser N rate was increased. Ryegrass TDM production did not differ between the 100 and 150 kg N ha-1 rates but were both higher (P=0.05) if compared to the 0 and 50 kg N ha-1 treatments. Soil nitrate levels 31 days after application of 150 kg N ha–1 were still sufficient to stimulate ryegrass RDM production. The 173.8% increase in ryegrass TDM production measured at 6 °C where 150 kg N ha-1 was applied compared to the 0 kg N ha-1 treatment illustrated the ability of ryegrass to respond to fertiliser N at low soil temperatures. Soil water potential of -20 kPa resulted in higher ryegrass PDM and TDM production compared to the -25 and -35 kPa levels. White clover PDM and TDM production were however not influenced by soil water potential or fertiliser N rate. Ryegrass TDM production increased (P=0.05) as fertiliser N rates were increased. The most favourable soil water level for both ryegrass and clover root development was found to be -35 kPa. Perennial ryegrass and white clover PDM, RDM and TDM production were higher during the October/November season compared to the June/July season. Increased fertiliser N rates resulted in increased (P=0.05) ryegrass PDM and TDM production. White clover dry matter production was not influenced by fertiliser N rates. In the field study the effect of 0, 50, 100 and 150 kg N ha-1 applied as a single application either in autumn, early winter, late winter, early spring or late spring on pasture dry matter production, clover content and selected quality parameters of a perennial ryegrass-white clover pasture were investigated. Soil nitrogen dynamics in the 0-100, 200-300 and 400-500 mm soil layers were studied for 49 days following fertiliser N application. The effect of 50 kg N ha-1 on soil N dynamics was generally the same as found at the 0 kg N ha-1 applications and may therefore be regarded as a low risk treatment. The application of 150 kg N ha-1 especially in autumn and early winter showed a tendency to exceed the absorption capacity of the pasture and thereby expose fertiliser N to possible leaching and contamination of natural resources. Increased fertiliser N rate resulted in a general increase in pasture dry matter production with the highest yields recorded where N was applied in early and late spring and the lowest in early winter. The application of 150 kg N ha-1 in early and late spring resulted in the highest TDM production, however, the 50 kg N ha-1 resulted in a more efficient conversion of N applied to additional DM produced. In contrast to DM production, the clover percentage generally decreased as fertiliser N rate was increased. The effect of season of application was inconsistent. Annual trends show that the clover percentage eventually recovered to the same levels as the 0 kg N ha-1 treatments. Due to the above minimum levels recorded for most mineral and quality parameters tested it is envisaged that treatment combinations as used in this study will not be at any disadvantage to pasture and animal productivity. The study has shown that the use of fertiliser N to boost perennial ryegrass-white clover productivity and thereby minimising the negative effect of the winter gap on fodder flow management during the cool season in the Western Cape Province, may be an important management tool. Except for late spring applications, all seasons of application reduced the negative impact of the winter gap on fodder availability. It is concluded that regression lines as summarised in Tables 7.2 and 8.2 show great potential to be instrumental in developing regression models, accurately predicting the effect of fertiliser N rate on pasture performance. Other factors to be considered includes the productivity of the pasture, initial clover content, expected clover content at the end of the first regrowth cycle after fertiliser N application and the quantity of additional fodder required. Additional requirements will be to maintain and 150 kg N ha-1) in winter, as the N uptake capacity of the pasture could be exceeded and thereby increasing the risk of N leaching, resulting in environmental pollution. The N response efficiency of the pasture is also the lowest at the 150 kg N ha-1 rates, thereby reducing the profitability of these treatments.
40

On the Profitability of UAS-Based NDVI Imagery for Variable Rate Nitrogen Prescriptions in Corn and Wheat in North Dakota

Duchsherer, Christopher Joseph January 2018 (has links)
This study examines the grower’s decision to invest in precision agriculture technologies especially in-season variable rate nitrogen applications based on NDVI data collected from UAVs. NDVI, yield, soil, and other field data were collected from multiple corn and wheat fields located throughout North Dakota. Each field was divided into management zones to determine profitability of utilizing the technology based on in-season nitrogen applications for the grower’s field practice, high, low, and no applications. Results show that using the NDVI data collected from UAVs can be profitable when the grower decides to make the decision to apply nitrogen in a sidedress application.

Page generated in 0.4759 seconds