• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Evaluation of Solids and Ash Removal Pathways of Fast Pyrolysis Bio-oils

Mazerolle, Dillon 27 November 2019 (has links)
Biomass liquefaction by fast pyrolysis is considered to be a key technology in future biorefineries for the production of low-carbon renewable liquids. These liquids may be used as a fuel for heat and power, as an intermediate for catalytic upgrading to distillate transportation fuels (such as renewable diesel or biojet) and as a raw material for advanced bioproducts. With the estimated supply of bioenergy required to meet international GHG reduction targets, the use of high ash (mineral-containing) biomass sources, such as harvest residues, hog fuels, and other unmerchantable wood sources is also expected to increase. However, the elevated presence of suspended char particulate (solids), as well as minerals and other ash components contained in pyrolytic liquids resulting from the conversion of these lower quality biomass residues may create new challenges for end-users. In light of this, two treatment pathways were investigated in this work: biomass pretreatment through sieving and acid washing, and post-condensation microfiltration of fast pyrolysis bio-oils. Selection of these two pathways was prioritized based on scarcity of published data, as well as the technical potential of both approaches for suspended char particulate and ash reduction in fast pyrolysis bio-oils. For biomass sieving and acid washing carried out at pilot scale, it was found that removing up to 80% of the ash contained in a hog fuel feedstock was possible by sieving out a fraction of the fines and subsequently washing with 0.1M nitric acid provided up to 40% increase in organic liquid yield after fast pyrolysis. Reaction water in the product was minimized when acid leaching was performed, while the solids content and ash content of the produced liquids were reduced by up to 80% and 87%, respectively. Cross-flow microfiltration of fast pyrolysis bio-oils produced principally from non-pretreated mill and harvest residues in the 1-40 µm range was performed. Microfiltration was found to remove between 80-95% of suspended solid particles, while only removing 4-45% of ash, presumably in the solid phase. To achieve high ash removal (>90%), microfiltration was combined with use of solid-phase adsorbents, such as Amberlyst 15, to remove cationic ash elements such as magnesium, calcium, iron, etc. The flux profiles from bio-oil cross-flow microfiltration were analyzed and consistently demonstrated a transient rapid and intermediate decline operating region, followed by a pseudo steady-state operating region. It was found that the initial flux of permeate in the transient operating region ranged from 100-1000 L m-2 h-1, while the pseudo steady-state flux ranged from 20-50 L m-2 h-1 for the experimental trials included in this study. It was determined that bio-oil temperatures of 50-60 ˚C, transmembrane pressures less than 1 bar and the addition of diluent solvents provided the highest pseudo steady-state fluxes of such a process. To improve the throughput of the process, different fouling remediation strategies were experimentally evaluated. The use of permeate, solvent and air backflushing confirmed that on-line cleaning strategies are suitable for active flux remediation, as fouling was found to be reversible over continuous operating periods up to 10 hours. Furthermore, it was found that the use of non-optimized on-line air backflushing resulted in increased throughput of low solids fast pyrolysis bio-oil from cross-flow microfiltration by 100%. Ultimately, the data produced from this work is intended to be used to generate design parameters and associated cost estimates for biomass washing and post-condensation microfiltration as processing strategies to generate high quality bio-oils from low cost biomass feedstocks.
2

Microfiltration tangentielle appliquée à l'oenologie : compréhension et maîtrise des phénomènes de colmatage / Cross-flow microfiltration applied to oenology : understanding and control of fouling phenomena

El Rayess, Youssef 27 October 2011 (has links)
La clarification des vins par procédés membranaires en particulier la microfiltration tangentielle a toujours été limitée par le colmatage, générant des flux de perméation faibles incompatibles avec la rentabilité économique. La compréhension, la maîtrise, ainsi que l'anticipation des phénomènes de colmatage font l'objet de ce travail. Dans un premier temps, la contribution individuelle puis en mélange des composés du vin (tannins, pectines, mannoprotéines et levures) au colmatage d'une membrane céramique multicanaux a été évaluée. Une approche fondamentale a permis de proposer des mécanismes de colmatage : la présence des pectines induit les flux de perméation les plus faibles en formant un gel à la surface de la membrane tandis que les levures semblent au contraire avoir un effet protecteur dans le cas d'un vin brut. Parce qu'il représente le flux au-delà duquel un colmatage irréversible apparaît à la surface de la membrane, le flux critique pour l'irréversibilité est un paramètre clef pour contrôler le colmatage. Dans le cas de la filtration de vin, aucun flux critique n'a pu être déterminé ce qui a conduit à définir un critère identifiant une zone de travail où le degré de colmatage reste acceptable. La dernière partie de cette thèse est consacrée à l'étude de la filtration dynamique (RVF) pour une éventuelle application dans le secteur vinicole. Cette technique est testée en présence de deux membranes organiques différentes: PES (hydrophile) et PTFE (hydrophobe). Les observations ont permis de mettre en évidence l'efficacité du système contre le colmatage des membranes PES induite par l'action de l'agitateur. Le colmatage des membranes PTFE est énormément affecté par les interactions molécules/membrane rendant la filtration dynamique inefficace pour lutter contre le colmatage de ces membranes. / Wine clarification by membrane processes mainly cross-flow microfiltration has been limited by membrane fouling generating low permeate fluxes with economic efficiency. Understanding, controlling and anticipation of fouling are the main goals of this work. In a first time, the individual contribution of wine compounds (tannins, pectins, mannoproteins and yeasts) to a multichannel ceramic membrane fouling was evaluated. The fouling mechanisms were analyzed using a fundamental approach. The presence of pectins induce the lowest fluxes by a gel-type formation at the membrane surface while yeasts presence tends to reduce fouling in the case of crude wine (case of mixed components). Because it represents the flux beyond which irreversible fouling appears on the membrane surface, the critical flux for irreversibility is a key parameter to control fouling. No critical flux for irreversibility could be measured, hence a criterion that identifies a range of operating conditions where the degree of fouling remains acceptable was proposed. The last part of this work was devoted to the study of dynamic filtration (RVF) for further application in wine sector. This technique was tested with two different membranes: hydrophilic PES and hydrophobic PTFE. Results have allowed to demonstrate the efficiency of the system to reduce fouling in the case of PES membrane. Fouling of PTFE membrane is greatly influenced by molecules / membrane interaction making dynamic filtration ineffective in reducing of membrane fouling.
3

Hurdle technologies: microbial inactivation by pulsed electric fields during milk processing.

Rodriguez Gonzalez, Oscar 25 January 2011 (has links)
The application of non-thermal processes pulsed electric fields (PEF) and cross-flow micro-filtration (CFMF) continuous to be studied with the purpose of controlling microorganisms in milk. Trends suggesting increased adoption include the study of Food Safety Objectives as a safety criterion, the promotion of sustainable processing, and the implementation of hurdle strategies. While the advance of gentle processing is counteracted by the risk of enhanced resistance due to microbial stress response, several techniques can be applied to quantitatively assess its impact. The objective of this project was to evaluate the effectiveness of microbial inactivation by PEF and CFMF at various steps of milk processing including shelf-life, its comparison with high temperature short time (HTST) pasteurization, and the quantitative assessment of the cross protection resistance to PEF of Escherichia coli O157:H7. Some differences in mesophilics inactivation were observed in milks (fat contents between 1.1% and 3.1%). Increasing the PEF inlet temperature decreased the treatment time by three or two-fold. The combination of CFMF/PEF yielded similar microbial reductions as CFMF/HTST. Higher inactivation of the coliforms was achieved in homogenized cream (12% fat) compared to non-homogenized. The linear relation between electrical conductivity and nutrient content (fat and solids content) was established. In a parallel study the PEF/CFMF sequence resulted in higher inactivation of mesophilics compared to CFMF/PEF and HTST. The shelf life was acceptable for CFMF/PEF and HTST after 7 days, while enterics and psychrotrophs grew more after PEF/CFMF, thermodurics did after HTST. The growth and stress of Escherichia coli O157:H7 in lactose containing broths was monitored by absorbance and fluorescence expression of stress reporters. Growth was explained using a secondary model, and stress response using mechanistic and probabilistic models. PEF inactivation was evaluated following the Weibull distribution after the cells reached stationary phase or maximum fluorescence expression. Similar resistances were observed within the cells grown in lactose broth at 10, 25 or 40°C, as within stressed cells (starved or cold shocked). Cells grown at 45 °C were more resistant compared to the cells grown in acid, high salt concentration while the ones grown at cold temperatures were the weakest. / Dairy Farmers of Ontario, Natural Sciences and Engineering Research Council.

Page generated in 0.1334 seconds