• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Předpovídání výnosové křivky na trhu s ropou pomocí neuronových sítí / Forecasting Term Structure of Crude Oil Markets Using Neural Networks

Malinská, Barbora January 2015 (has links)
This thesis enhances rare literature focusing on modeling and forecasting of term structure of crude oil markets. Using dynamic Nelson-Siegel model, crude oil term structure is decomposed to three latent factors, which are further forecasted using both parametric and dynamic neural network approaches. In-sample fit using Nelson-Siegel model brings encouraging results and proves its applicability on crude oil futures prices. Forecasts obtained by focused time-delay neural network are in general more accurate than other benchmark models. Moreover, forecast error is decreasing with increasing time to maturity.
2

On the returns of trend-following trading strategies / Avkastningen från trendföljande handelsstrategier

Lundström, Christian January 2017 (has links)
Paper [I] tests the success rate of trades and the returns of the Opening Range Breakout (ORB) strategy. A trader that trades on the ORB strategy seeks to identify large intraday price movements and trades only when the price moves beyond some predetermined threshold. We present an ORB strategy based on normally distributed returns to identify such days and find that our ORB trading strategy result in significantly higher returns than zero as well as an increased success rate in relation to a fair game. The characteristics of such an approach over conventional statistical tests is that it involves the joint distribution of low, high, open and close over a given time horizon. Paper [II] measures the returns of a popular day trading strategy, the Opening Range Breakout strategy (ORB), across volatility states. We calculate the average daily returns of the ORB strategy for each volatility state of the underlying asset when applied on long time series of crude oil and S&P 500 futures contracts. We find an average difference in returns between the highest and the lowest volatility state of around 200 basis points per day for crude oil, and of around 150 basis points per day for the S&P 500. This finding suggests that the success in day trading can depend to a large extent on the volatility of the underlying asset. Paper [III] performs empirical analysis on short-term and long-term Commodity Trading Advisor (CTA) strategies regarding their exposures to unanticipated risk shocks. Previous research documents that CTA strategies offer diversification opportunities during equity market crisis situations when evaluated as a group, but do not separate between short-term and long-term CTA strategies. When separating between short-term and long-term CTA strategies, this paper finds that only short-term CTA strategies provide a significant, and consistent, exposure to unanticipated risk shocks while long-term CTA strategies do not. For the purpose of diversifying a portfolio during equity market crisis situations, this result suggests that an investor should allocate to short-term CTA strategies rather than to long-term CTA strategies.

Page generated in 0.0536 seconds