• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tuning the Morphology and Electronic Properties of Single-Crystal LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4-δ</sub>

Spence, Stephanie L. 27 October 2020 (has links)
The commercialization of lithium-ion batteries has played a pivotal role in the development of consumer electronics and electric vehicles. In recent years, much research has focused on the development and modification of the active materials of electrodes to obtain higher energies for a broader range of applications. High voltage spinel materials including LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4-δ</sub> (LNMO) have been considered as promising cathode materials to address the increasing demands for improved battery performance due to their high operating potential, high energy density, and stable cycling lifetimes. In an effort to elucidate fundamental structure-property relationships, this thesis explores the tunable properties of single-crystal LNMO. Utilizing facile molten salt synthesis methods, the structural and electronic properties of LNMO can be well controlled. Chapter 2 of this thesis focuses on uncovering the effect of molten salt synthesis parameters including molten salt composition and synthetic temperature on the materials properties. A range of imaging, microscopic, and spectroscopic techniques are used to characterize structural and electronic properties which are investigated in tandem with electrochemical performance. Results indicate the Mn oxidation state is highly dependent on synthesis temperature and can dictate performance, while the molten salt composition strongly influences the particle morphology. In Chapter 3, we explore the concept of utilizing LNMO as a tunable support for heterogeneous metal nanocatalysts, where alteration of the support structure and electronics can have an influence on catalytic properties due to unique support effects. Ultimately, this work illustrates the tunable nature of single-crystal LNMO and can inform the rational design of LNMO materials for energy applications. / M.S. / The development of lithium-ion batteries has been fundamental to the expansion and prevalence of consumer electronics and electric vehicles in the twenty-first century. Despite their ubiquity, there is an ongoing drive by researchers to address the limitations and improve the quality and performance of lithium ion batteries. Much research has focused on altering the composition, structure, or properties of electrodes at the materials level to design higher achieving batteries. A fundamental understanding of how composition and structure effect battery performance is necessary to progress toward better materials. This thesis focuses on investigating the properties of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4-δ</sub> (LNMO). LNMO material is considered a promising cathode material to meet the increasing consumer demands for improved battery performance. Through the synthesis methods, the shape of individual particles and the global electronic properties of LNMO can be tuned. In this work, specific synthesis parameters are systematically tuned and the properties of the resultant LNMO materials are explored. Electrochemical testing also evaluates the performance of the materials and offers insights into how they may fair in real battery systems. In an effort to potentially recycle spent battery materials, LNMO is also utilized as a catalyst support. Alteration of shape and electronic properties of the LNMO support can influence the catalytic properties, or the ability of the material to enhance the rate of a chemical reaction. Overall, this thesis explores how LNMO can be tuned and utilized for different applications. This work provides insights for understanding LNMO properties and direction for the development of future battery materials.
2

Bi₁₂Rh₃Cu₂I₅: A 3D Weak Topological Insulator with Monolayer Spacers and Independent Transport Channels

Carrillo-Aravena, Eduardo, Finzel, Kati, Ray, Rajyavardhan, Richter, Manuel, Heider, Tristan, Cojocariu, Iulia, Baranowski, Daniel, Feyer, Vitaliy, Plucinski, Lukasz, Gruschwitz, Markus, Tegenkamp, Christoph, Ruck, Michael 11 June 2024 (has links)
Topological insulators (TIs) are semiconductors with protected electronic surface states that allow dissipation-free transport. TIs are envisioned as ideal materials for spintronics and quantum computing. In Bi14Rh3I9, the first weak 3D TI, topology presumably arises from stacking of the intermetallic [(Bi4Rh)3I]2þ layers, which are predicted to be 2D TIs and to possess protected edge-states, separated by topologically trivial [Bi2I8]2+ octahedra chains. In the new layered salt Bi12Rh3Cu2I5, the same intermetallic layers are separated by planar, i.e., only one atom thick, [Cu2I4]2- anions. Density functional theory (DFT)-based calculations show that the compound is a weak 3D TI, characterized by Z2 ¼ ð0; 0001Þ, and that the topological gap is generated by strong spin–orbit coupling (Eg,calc.~ 10 meV). According to a bonding analysis, the copper cations prevent strong coupling between the TI layers. The calculated surface spectral function for a finite-slab geometry shows distinct characteristics for the two terminations of the main crystal faces 〈001〉, viz., [(Bi4Rh)3I]2þ and [Cu2I4]2-. Photoelectron spectroscopy data confirm the calculated band structure. In situ four-point probe measurements indicate a highly anisotropic bulk semiconductor (Eg,exp.¼ 28 meV) with pathindependent metallic conductivity restricted to the surface as well as temperatureindependent conductivity below 60 K.

Page generated in 0.4417 seconds