• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 484
  • 152
  • 129
  • 97
  • 19
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 1110
  • 173
  • 144
  • 87
  • 86
  • 86
  • 80
  • 73
  • 70
  • 66
  • 65
  • 63
  • 62
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Structural studies of the SARS virus Nsp15 endonuclease and the human innate immunity receptor TLR3

Sun, Jingchuan 16 August 2006 (has links)
Three-dimensional (3D) structural determination of biological macromolecules is not only critical to understanding their mechanisms, but also has practical applications. Combining the high resolution imaging of transmission electron microscopy (TEM) and efficient computer processing, protein structures in solution or in two-dimensional (2D) crystals can be determined. The lipid monolayer technique uses the high affinity binding of 6His-tagged proteins to a Ni-nitrilotriacetic (NTA) lipid to create high local protein concentrations, which facilitates 2D crystal formation. In this study, several proteins have been crystallized using this technique, including the SARS virus Nsp15 endonuclease and the human Toll-like receptor (TLR) 3 extracellular domain (ECD). Single particle analysis can determine protein structures in solution without the need for crystals. 3D structures of several protein complexes had been solved by the single particle method, including IniA from Mycobacterium tuberculosis, Nsp15 and TLR3 ECD. Determining the structures of these proteins is an important step toward understanding pathogenic microbes and our immune system.
192

Copolymers and Blends of Poly(butylene succinate): Characterization, Crystallization, Melting Behavior, and Morphology

Hsu, Hui-Shun 23 August 2009 (has links)
The topics of this study are as follows: (a) Poly(butylene succinate) (PBSu) rich random copolymers containing ~20% and ~50% trimethylene succinate (TS), PBTSu 80/20 and PBTSu 50/50 that were synthesized from 1,4-butanediol, 1,3-propanediol and succinic acid: The influence of minor TS units on the thermal properties and crystallization rate of PBSu was investigated. (b) Random copolymer of ~90% PBSu and ~10% poly(1,4-cyclohexanedimethylene succinate), PBCHDMSu 90/10, that was synthesized from 1,4-butanediol, 1,4-cyclohexanedimethanol and succinic acid: The influence of cyclohexene unit on the thermal properties and crystallization rate of PBSu was investigated. (c) Blends of PBSu and poly(trimethylene succinate) (PTSu) or poly(ethylene succinate) (PESu): The weight ratio PBSu and PTSu (or PESu ) were 1:1. The crystallization and morphology of blends (PBSu/PTSu 50/50 and PBSu/PESu 50/50) were investigated and compared with PBTSu 50 and PBESu 50/50. The chemical composition and the sequence distribution of co-monomers in copolyesters were determined using NMR. Thermal properties of polyesters and blends were characterized using differential scanning calorimeter (DSC) and temperature-modulated DSC (TMDSC). The crystallization kinetics and equilibrium melting temperature were analyzed with Avrami equation and Hoffman-Weeks linear extrapolation. The thermal stability of polyesters was analyzed by thermogravimeter (TGA) and polarized light microscope (PLM) under nitrogen. Wide-angle X-ray diffractograms (WAXD) were obtained for specimens after complete isothermal crystallization. The growth rates, regime transition temperature, morphology and phase separation were studied using polarized light microscope (PLM) with isothermal method or nonisothermal method. The morphology of specimens after chemical etching were investigated using atomic force microscope (AFM) and scanning electron microscope (SEM). The distribution of butylene succinate (BS) and TS units in PBTSu 80/20 was found to be random from the evidence of a single Tg and a randomness value close to 1.0 for a random copolymer. With the increasing of minor amounts of comonomers, the sequence length of butylene succinate decreases, and the crystallization rate and the degree of crystallinity drop. DSC heating curves of isothermal crystallized PBTSu 80/20 and PBCHDMSu 90/10 showed triple melting peaks. Multiple melting behaviors indicate that the upper melting peaks are associated with the primary and the recrystallized crystals, or the crystals with different lamellar thickness. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. Hoffman-Weeks linear plots gave an equilibrium melting temperature of 113.5
193

Characterization, Crystallization, Melting and Morphology of Poly(alkylene succinate) Copolymers and Blends

Shih, You-cheng 27 August 2009 (has links)
This study contains four main parts. Part 1, poly(butylene succinate) (PBSu) rich random copolymers containing ~20% 2-methyl-1,3-propylene succinate (MPS), PBMPSu 80/20. The influence of minor MPS units on thermal properties and crystallization rate was investigated. Part 2, poly(butylene succinate) (PBSu) rich random copolymers containing ~5% 1,4-cyclohexanedimethylene succinate (CHDMS), PBCHDMSu 95/5. The influence of cyclohexane unit on thermal properties and crystallization rate was investigated. Part 3, Poly(butylene succinate) (PBSu) random copolymers containing ~50% 2-methyl-1,3-propylene succinate (MPS), PBMPSu 50/50. Blend of PBSu with poly(2-methyl-1,3-propylene succinate) (PMPSu). The weight ratio of PBSu and PMPSu were 1:1. The crystallization behavior and morphology was compared. Part 4, Poly(ethylene succinate) (PESu) random copolymers containing ~50¢H trimethylene succinate (TS), PETSu 50/50. Blend of PESu with poly(trimethylene succinate) (PTSu). The weight ratio of PESu and PTSu were 1:1. The crystallization behavior and morphology was compared. Molecular weights of copolymers were measured using capillary viscometer and gel permeation chromatography (GPC). The results indicate that polyesters used in this study have high molecular weights. The chemical composition and the sequence distribution of co-monomers in copolyesters were determined using 1H NMR and 13C NMR. The distribution in these copolyesters was found to be random from the evidence of a randomness value close to 1.0 for a random copolymer. Thermal properties of blends and copolyesters were characterized using differential scanning calorimeter (DSC) and thermogravimeter (TGA). The crystallization kinetics and mleting behaviors was analyzed after isothermal crystallization by DSC. Wide-angle X-ray diffractograms (WAXD) were obtained for specimens after complete isothermal crystallization. The growth rates, morphology were studied using polarized light microscope (PLM). The morphology of specimens after chemical etching was investigated using scanning electron microscope (SEM) and atomic force microscope (AFM). AS the ratio of MPS units increase, the degree of crystallinity and crystallization rate drop, it was due to decrease of butylene succinate sequence length. The spherulite growth rate of PBCHDMSu 95/5 is much slower compare with PBSu rich copolymers containing 5% TS or MPS. It was due to the steric effect of cyclohexane unit in the polymer chains. The crystalline morphology of PBMPSu 50/50 and PETSu 50/50 were quite different. It was due to the short sequence length of butylene succinate and ethylene succinate. From the analysis results by DSC and observation by PLM and SEM, it indicates that PBSu was miscible with PMPSu while PESu was partial miscible with PTSu.
194

Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems

Chavez, Krystle J. January 2009 (has links)
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Rousseau, Ronald; Committee Member: Meredith, Carson; Committee Member: Prausnitz, Mark; Committee Member: Teja, Amyn; Committee Member: Wilkinson, Angus. Part of the SMARTech Electronic Thesis and Dissertation Collection.
195

CRYSTALLIZATION AND CHARACTERIZATION OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE FROM HIGHER PLANTS

Johal, Sarjit Singh January 1980 (has links)
No description available.
196

The effects of crystallization on oligothiophene morphologies

Herrmann, Debra McGuire 06 January 2011 (has links)
Polythiophenes have shown potential as inexpensive organic semiconductors because of their charge mobility properties. Small changes in structures can change the electronic and optical properties. Because oligothiophenes demonstrate the same electronic properties, have better solubility, and are easier to purify without defects, oligothiophenes are used as models for the polythiophenes. X-ray diffraction is an accepted method for studying the structure and arrangement of atoms in oligothiophenes; however, XRD requires crystalline solids for analysis. Obtaining suitable crystals can be difficult. In this paper, two crystallization techniques, vapor diffusion and zone sublimation, and the results are discussed. Raman spectroscopy, a type of vibrational spectroscopy, will give information about the structure of a molecule and can act as the molecular fingerprint of the molecule. Raman spectroscopy does not require crystalline solids and provides a relatively fast analysis. If the Willets lab can characterize the oligothiophenes by Raman spectroscopy, demonstrate distinguishable spectra for the different morphologies, and correlate this to the X-ray diffraction data, Raman spectroscopy will be an easier and faster means for analyzing the oligothiophenes. / text
197

A process design study for a raw sugar crystallization process

Ruiz Gecosala, Rinly January 1979 (has links)
No description available.
198

Extrusion foaming of bioplastics for lightweight structure in food packaging

Duangphet, Sitthi January 2012 (has links)
This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams. 61 and 47 % density reduction were achieved for the commercial PHBV and the PHBV/PBAT/CaCO3 composite respectively and there exists further scope for more expansion if multiple variable optimisation of the conditions are carried out.
199

Crystallization and mutational studies of carbon monoxide dehydrogenase from moorella thermoacetica

Kim, Eun Jin 30 September 2004 (has links)
Carbon Monoxide Dehydrogenase (CODH), also known as Acetyl-CoA synthase (ACS), is one of seven known Ni containing enzymes. CODH/ACS is a bifunctional enzyme which oxidizes CO to CO2 reversibly and synthesizes acetyl-CoA. Recently, X-ray crystal structures of homodimeric CODH from Rhodospirillum rubrum (CODHRr) and CODH from Carboxydothermus hydrogenoformans (CODHCh) have been published. These two enzymes catalyze only the reversible oxidation of CO to CO2 and have a protein sequence homologous to that of the β subunit of heterotetrameric α2β2 enzyme from Moorella thermoacetica (CODHMt), formerly Clostridium thermoaceticum. Neither CODHRr nor CODHCh contain an α-subunit as is found in CODHMt. The precise structure of the active site for acetyl-CoA synthase, called the A-cluster, is not known. Therefore, crystallization of the α subunit is required to solve the remaining structural features of CODH/ACS. Obtaining crystals and determining the X-ray crystal structure is a high-risk endeavor, and a second project was pursued involving the preparation, expression and analysis of various site-directed mutants of CODHMt. Mutational analysis of particular histidine residues and various other conserved residues of CODH from Moorella thermoacetica is discussed. Visual inspection of the crystal structure of CODHRr and CODHCh, along with sequence alignments, indicates that there may be separate pathways for proton and electron transfer during catalysis. Mutants of a proposed proton transfer pathway were characterized. Four semi-conserved histidine residues were individually mutated to alanine. Two (His116Mt and His122Mt) were essential to catalysis, while the other two (His113Mt and His119Mt) attenuated catalysis but were not essential. Significant activity was "rescued" by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also "rescued" by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway.
200

Crystallization and melting behavior studies of un-nucleated and silica-nucleated isotactic polystyrene and isotactic poly(propylene oxide)

Kennedy, Mary A. January 1988 (has links)
The effect of silica on the crystallization and melting behavior of a highly isotactic, well characterized isotactic polystyrene (i-PS) have been investigated. The origins of the various endotherms obtained upon heating have been defined by partial scanning experiments and by a study of the effect of heating rate using differential scanning calorimetry (DSC). The presence of 1 part silica in 100 parts polymer (1 pph) decreases the maximum degree of crystallinity considerably but has a minimal effect on the rate of crystallization. Analysis by the Avrami method shows that the silica does not affect the overall rate of crystallization significantly. The decrease in the crystallinity indicates that silica affects the level of secondary crystallization, thus the crystal perfection. / The surface morphologies and growth rates of i-PS spherulites, as studied by photomicroscopy, were not affected by 1 pph of silica. The experimental data were fitted to a modified form of the Hoffman-Lauritzen equation. / The effect of silica on spherulite growth rates and surface morphologies of isotactic poly(propylene oxide) (i-PPO) have also been investigated by optical microscopy. Two distinct i-PPO samples of different molecular weights were used, each of which was highly isotactic. The addition of silica has a pronounced effect on the morphology of the spherulites, producing dendritic type morphology. Upon step-crystallization, the spherulites exhibited mixed morphologies, i.e., fibrillar and ringed. Silica depresses the spherulite growth rates throughout the entire temperature range. The effects were more profound as the quantity of filler increased. The growth rate-temperature behavior was analysed in terms of the classical Hoffman-Lauritzen equation and a modified version to take into account the polymer-filler interaction.

Page generated in 0.1208 seconds