• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 484
  • 152
  • 129
  • 97
  • 19
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 1110
  • 173
  • 144
  • 87
  • 86
  • 86
  • 80
  • 73
  • 70
  • 66
  • 65
  • 63
  • 62
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Rheo-NMR and synchrotron X-ray diffraction characterization of nanostructures of triglycerides crystallizing from solutions

20 April 2011 (has links)
The characteristics of crystallized fats depend on their solid fraction (SF) and fractal structures, which are affected by shear during crystallization. Binary mixtures of trilaurin (LLL) and trimyristin (MMM) diluted in triolein were used as samples. Pure diluted LLL and MMM were also studied. Samples were examined at different crystallization temperatures either statically or at shear rates of 800, 80, and 8 1/s. The sample cell combined a rheometer with a nuclear magnetic resonance (NMR) device to measure SF value and apparent viscosity. The measurements were compared to equations that describe the dependency of viscosity on solid volume fraction, to understand the effect of crystallites orientation at higher shear rates. Phase transitions during crystallization were observed by time-resolved synchrotron X-ray diffraction under similar conditions. Shear induced a strong reduction in phase onset and transition time and variations in phase distributions and the crystal size.
332

Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5

Kashyap, Satadru Unknown Date
No description available.
333

The strengthening effect of hot work subgrains.

Kosik, O. To January 1970 (has links)
No description available.
334

Dynamic modelling and optimal control of sugar crystallisation in a multi-compartment continuous vacuum pan.

Love, David John. January 2002 (has links)
The objective of this work was to determine the operating conditions which would maximise the crystallisation performance of continuous vacuum pans used in the sugar industry. The specific application investigated in detail is crystallisation of high grade product sugar (A-sugar) in a South African raw cane sugar factory. The optimisation studies are based on a detailed dynamic mathematical model of a continuous pan. Whilst this model is based on the published work of others, the selection of variables and the formulation of the equations have been structured to produce a modular model of an individual compartment with the minimum number of independent variables. The independent variables have also been selected to meet the requirements of both a state-space control formulation and those necessary for the dynamic programming technique of optimisation. The modular compartment models are linked together to model a multi-compartment pan and the steady state model is derived as a special case of the dynamic model. For the model to simulate the conditions in South African sugar factories adequately requires appropriate descriptions of sucrose solubility and growth kinetics. Given the limited applicability of published data, experiments were undertaken to determine these parameters. Sucrose solubility in impure solutions was determined in laboratory tests designed to approach equilibrium by dissolution at conditions approximating those during pan boiling. The dependence of crystal growth rate on the concentration of impurity present in the mother liquor was investigated in both laboratory scale and pilot scale batch pan boiling experiments. The primary dependence of crystal growth rate on the super-saturation driving force was determined by fitting the steady state model to results of tests on an industrial scale continuous pan. The dynamic programming technique was used in conjunction with the mathematical model to determine the operating conditions which maximise steady state crystallisation performance. Using the crystallisation parameters determined for South African conditions, this approach has shown that the conventional wisdom of running with high crystal contents in all compartments of continuous pans boiling A-massecuite is not optimum. Pans should operate at lower crystal contents in earlier compartments, only increasing to higher crystal contents towards the final compartment. The specific values depend on seed conditions, pan design and the solubility and growth kinetics. To reap the benefits of being able to determine the optimum steady state operating condition for a continuous pan, it is necessary to be able to achieve effective steady state operation under industrial conditions. This requires both a steady loading on the pan and effective control of the crystallisation conditions within the pan. To stabilise loading, a strategy has been developed which uses buffer tanks in an optimal way to damp out flow fluctuations. This strategy accommodates multiple buffer tanks in series without the amplification of disturbances that occurs with some of the simpler published techniques. The dynamic behaviour of absolute pressure control and compartment feed control were investigated in an industrial scale pan. This work has demonstrated the importance of high quality absolute pressure control and developed techniques for effective automatic tuning of pan feed controls. As part of this research, computer control systems were developed as tools to provide the appropriate monitoring and control of the experiments undertaken. / Thesis (Ph.D.)-University of Natal, 2002.
335

The incorporation of impurities into sucrose crystals during the crystallisation process.

Lionnet, Georges Raoul Edouard. January 1998 (has links)
The main objective of this work is to propose a mechanism for the transfer of impurities into the sucrose crystal. To this end the transfer of impurities into the sucrose crystal was investigated, under crystallisation conditions similar to those found industrially. Most of the impurities, namely, colour bodies, potassium, calcium and starch, were selected on the basis of their industrial importance, but some exotic species, namely lithium and nickel, were chosen to represent other mono- and di-valent ions respectively, and dyes, such as methylene blue, which have been used in work with single crystal sucrose crystallisation, were included to make the results more general. A parameter to measure the rate at which impurities are transferred into the sucrose crystal was proposed. Experiments, carried out in a pilot plant evaporative crystalliser, were performed to establish the effect of selected factors on both the concentrations of impurities found in the sucrose crystal, and on the rate at which these impurities are incorporated into the crystal. All the factors selected, namely the rate of crystallisation, the temperature, the concentration and type of impurity, the diffusivity of the impurity in concentrated sucrose solutions, and the crystal dimensions, are shown to influence the rate of impurity transfer. Only the concentration in the feed and type of impurity, however, affect the final concentration of the impurity in the crystal. Concepts involving partition coefficients and adsorption isotherms were also investigated. The experimental data did not fit the adsorption isotherm models well, but the values obtained for the partition coefficients were similar to those quoted in the literature when exchange types of reactions are operative. Activation energies have been measured, both for the rate of crystallisation of sucrose, and for the rates of impurity transfer. The values obtained, particularly for the rate of impurity transfer, indicate that a transport mechanism is effective. The experimental results have been used to investigate the relevance of two models, one involving a two-step approach and the other an interfacial process, for the incorporation of the impurity into the sucrose crystal. The results obtained indicate that the interfacial breakdown model describes the transfer of all the impurities studied here, except for starch. / Thesis (Ph.D.)-University of Natal, Durban, 1998.
336

Sugar crystal size characterization using digital image processing.

Argaw, Getachew Abebe. January 2007 (has links)
The measurement of the crystal size distribution is a key prerequisite in optimising the growth of sugar crystals in crystalisation pans or for quality control of the final product. Traditionally, crystal size measurements are carried out by inspection or using mechanical sieves. Apart from being time consuming, these techniques can only provide limited quantitative information. For this reason, a more quantitative automatic system is required. In our project, software routines for the automated measurement of crystal size using classical image analysis techniques were developed. A digital imaging technique involves automatically analyzing a captured image of a representative sample of ~ 100 crystals for the automated measurement of crystal size has been developed. The main problem of crystals size measurements using image processing is the lack of an efficient algorithm to identify and separate overlapping and touching crystals which otherwise compromise the accuracy of size measurement. This problem of overlapping and touching crystals was addressed in two ways. First, 5 algorithms which identify and separate overlapping and touching crystals, using mathematical morphology as a tool, were evaluated. The accuracy of the algorithms depends on the technique used to mark every crystal in the image. Secondly, another algorithm which used convexity measures of the crystals based on area and perimeter, to identify and reject overlapping and touching crystals, have been developed. Finally, the two crystal sizing algorithms, the one applies ultimate erosion followed by a distance transformation and the second uses convexity measures to identify overlapping crystals, were compared with well established mechanical sieving technique. Using samples obtained from a sugar refinery, the parameters of interest, including mean aperture (MA) and coefficient of variance (CV), were calculated and compared with those obtained from the sieving method. The imaging technique is faster, more reliable than sieving and can be used to measure the full crystal size distributions of both massecuite and dry product. / Thesis (PhD)-University of KwaZulu-Natal, Durban, 2007.
337

Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5

Kashyap, Satadru 11 1900 (has links)
Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization (three dimensional crystallite formation) was found to always occur in bulk bioactive glass 45S5 irrespective of the processing conditions. A comparative study of crack paths in amorphous and crystalline phases of bioactive glass 45S5 revealed crack deflections and higher fracture resistance in partially crystallized bioactive glass. Such toughening is likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains. Furthermore, in vitro immersion testing of partially crystalline glass ceramic revealed higher adhesion capabilities of the mineralized layer formed on amorphous regions as compared to its crystalline counterpart. / Materials Engineering
338

Crystallization of pseudopolymorphic forms of sodium naproxen in mixed solvent systems

Chavez, Krystle J. 22 June 2009 (has links)
Several pseudopolymorphic forms of sodium naproxen were crystallized from methanol-water and ethanol-water solutions, including hydrated and alcohol-solvated forms. Results showed that the transitions of the pseudopolymorphic forms occur at temperatures that depend upon the solvent concentration. Results also revealed that water activity is a controlling factor for the transitions because regardless of which alcohol solvent mixture was used. The heats of solution for each pseudopolymorph were estimated by fitting the solubility data with the van't Hoff equation. The stability of hydrated forms over solvated forms at higher temperatures was proven for enantiotropic systems from a thermodynamic cycle. A 1:1 methanol-solvated form of sodium naproxen was discovered and fully characterized using a variety of analytical techniques. For further analysis, a single crystal was performed and revealed a two to three ratio solvate of sodium naproxen to methanol. The 1.5 solvate was shown to not be representative of the entire sample, but still provided insight into the bonding of the methanol solvent in sodium naproxen. Additionally, the ability of sodium naproxen to solvate with other alcohol solvents was explored, specifically looking at comparisons between pure ethanol, 1-propanol, 2-propanol, 1-butanol, and isobutanol solvents. It was shown that as the size of the alcohol increases and/or branching increases the ability to solvate decreases in relation to the molar amount of the alcohol present in the crystal structure. Additionally larger, branched alcohols required more energy to desolvate.
339

Spectroscopic investigation and quantitation of polymorphism and crystallinity of pharmaceutical compounds

Strachan, Clare, n/a January 2005 (has links)
Spectroscopy is increasingly used to investigate and monitor the solid state forms of pharmaceutical materials and products. Spectroscopy�s speed, nondestructive sampling, compatibility with fibre optics and safety also make it attractive for in-line monitoring. In this thesis, the spectroscopic techniques Fourier transform Raman spectroscopy, terahertz pulsed spectroscopy and second harmonic generation were used to characterise and quantify polymorphism and crystallinity of pharmaceutical compounds. Where possible, the multivariate analysis technique partial least squares was used for quantitative analysis. Fourier transform Raman spectroscopy detects polarisability changes mainly associated with molecular vibrations. Terahertz pulsed spectroscopy is a new spectroscopic technique that operates between the infrared and microwave regions of the electromagnetic spectrum and detects dipole moment changes mainly associated with crystalline phonon vibrations in the solid state. Second harmonic generation is a nonlinear optical phenomenon that depends on the dipole moment in crystals and crystal symmetry. Several materials capable of existing in different solid state forms were used. FT-Raman spectroscopy was able to differentiate carbamazepine forms I and III, enalapril maleate forms I and II and γ-crystalline and amorphous indomethacin. Combined with partial least squares the technique could quantify binary mixtures of CBZ forms I and III with a limit of detection as low as 1%, and mixtures of enalapril maleate with a limit of detection of as low as 2%. Terahertz pulsed spectroscopy obtained very different spectra for carbamazepine forms I and III, enalapril maleate forms I and II, γ-crystalline and amorphous indomethacin, crystalline and supercooled thermotropic liquid crystalline fenoprofen calcium, three forms of lactose, and five forms of sulphathiazole. At present the modes in the spectra cannot be attributed to specific phonon modes. Quantitation of binary mixtures of different forms of a compound using partial least squares analysis usually resulted in a limit of detection of about 1%. Second harmonic generation was used to quantify binary mixtures of different forms of enalapril maleate and lactose, as well as binary mixtures of enalapril maleate form II and polyvinylpyrrolidone. A quantitative relationship was present for each of the mixtures, however the limits of detection were usually above 10%. The high value is probably due to the machine being a prototype and univariate analysis associated with a single output variable. Future improvements to the apparatus and measurement parameters are likely to reduce the limits of detection. Ranitidine hydrochloride polymorphs could also be differentiated using second harmonic generation, however γ-crystalline and amorphous indomethacin and forms I and III of carbamazepine could not. The methods used in this thesis were successfully used for qualitative and quantitative analysis of polymorphism and crystallinity of pharmaceutical compounds. TPS and SHG are useful additions to the range of experimental techniques that can be used to investigate and monitor properties of pharmaceutical solids.
340

A study of the growth and aggregation of calcium oxalate monohydrate / by Allan Sidney Bramley.

Bramley, Allan Sidney January 1994 (has links)
Bibliography: leaves 278-289. / xi, 324 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / This thesis reports on experimental investigation of the growth and aggregation of calcium oxalate mono-dydrate in metastable saline solutions using batch and continuous systems. The physical chemistry of calcium oxalate mono-hydrate in aqueous solutions is considered. A tubular crystalliser to be used as an in vitro system is described. / Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 1996?

Page generated in 0.0774 seconds