• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intercalados de pentóxido de vanádio com cucurbit[n]urilas e hemi-cucurbit[6]urila / Vanadium pentoxide intercalates with cucurbit[n]uril (CB[n]) and hemi-cucurbit[6]uril (HCB[6])

Francisco de Araújo Silva 28 February 2014 (has links)
Compósitos de xerogel de pentóxido de vanádio (VXG) com cucurbit[6]urila (CB[6]), hemicucurbit[6]urila (HCB[6]) e oxovanadio(IV)cucurbit[6]urila (CB[6]VO) em diferentes concentrações foram preparados por mistura mecânica dos macrociclos com o gel de V2O5. Misturas homogêneas foram obtidas para quantidades até 10% em mol de CB[6] e HCB[6], e 1% de CB[6]VO. Estes macrociclos foram intercalados nos espaços interlamelares do VXG como mostram os dados de difração de raios-X (DRX), aumentando o espaço interlamelar e criando dois domínios cristalográficos distintos. As propriedades estruturais e composição destes intercalados foram estudadas por espectroscopia no infravermelho, análise termogravimétrica, microscopia eletrônica de varredura e microscopia de força atômica. Ensaios eletroquímicos mostraram que a capacidade específica de carga inicial do VXG (158 mA.h.g-1) melhora com a presença de CB[6] (168 mA.h.g-1), da HCB[6] (200 mA.h.g-1), e principalmente com CB[6]VO (230 mA.h.g-1), em filmes finos com baixa concentração dos macrociclos. Isto supera a capacidade de eletrodos de bateria comerciais. Nos intercalados com CB[6] a complexação dos íons Li+ com seus opérculos prejudica a reversibilidade na inserção/desinserção deste íon, diminuindo drasticamente a ciclabilidade de carga/descarga; a presença da HCB[6], que não complexa com o íon Li+, não sustenta a estrutura do VXG ao longo de vários ciclos, por não ser um macrociclo rígido. A presença de CB[6]VO parece estabilizar a estrutura do VXG oferencendo caminhos alternativos na difusão do íon Li+, que não complexa com os opérculos da CB obstruído pelo ion VO2+, aumentando a ciclabilidade, mantendo sua carga específica em aproximadamente 88% após 40 ciclos cronopotenciométricos. / Cucurbit[n]uril (CB[n]), hemi-cucurbit[6]uril (HCB[6]), and oxovanadium(IV)cucurbit[6]uril (CB[6]VO) vanadium pentoxide composites were prepared in several mole ratios by mechanically mixing the macrocycles and the V2O5 gel. Homogeneous mixtures were obtained for amounts as high as 10% in mol of CB[6] and HCB[6] and 1% of CB[6]VO. These macrocycles were intercalated in VXG interlamellar space as we could demonstrate with X-ray powder diffraction experiments (XRPD),which clearly show basal distance expansions and the formation of two crystallographic domains. The structural properties of such intercalates as well as their composition were studied with infrared spectroscopy, thermogravimmetric analysis, sweeping electron microscopy, and atomic force microscopy. Electrochemical experiments have shown that the initial specific charge capacity of VXG (158 mA.h.g1) was enhanced with the addition of CB[6] (168 mA.h.g1) and HCB[6] (200 mA.h.g1) and even more with (230 mA.h.g1) in thin films with low macrocycle amounts. These capacities exceed commercial batteries electrodes. Complexation of CB[6] with Li+ ions in CB[6]/VXG intercalates reduces considerably the reversibility of insertion/expulsion of this ion, reducing drastically its charge/discharge cyclability. The presence of HCB[6], who does not bind Li+ ions, is not rigid enough to sustain the oxide structure during many cycles. The presence of CB[6]VO seems to stabilize the VXG structure and offers alternative pathways for Li+ diffusion. It does not bind these ions since the occulli are occupied by VO2+ ions, enhancing cyclability. Its specific charge remains as high as 88% of the maximum charge capacity after 40 chronopotentiometric cycles.
2

Intercalados de pentóxido de vanádio com cucurbit[n]urilas e hemi-cucurbit[6]urila / Vanadium pentoxide intercalates with cucurbit[n]uril (CB[n]) and hemi-cucurbit[6]uril (HCB[6])

Silva, Francisco de Araújo 28 February 2014 (has links)
Compósitos de xerogel de pentóxido de vanádio (VXG) com cucurbit[6]urila (CB[6]), hemicucurbit[6]urila (HCB[6]) e oxovanadio(IV)cucurbit[6]urila (CB[6]VO) em diferentes concentrações foram preparados por mistura mecânica dos macrociclos com o gel de V2O5. Misturas homogêneas foram obtidas para quantidades até 10% em mol de CB[6] e HCB[6], e 1% de CB[6]VO. Estes macrociclos foram intercalados nos espaços interlamelares do VXG como mostram os dados de difração de raios-X (DRX), aumentando o espaço interlamelar e criando dois domínios cristalográficos distintos. As propriedades estruturais e composição destes intercalados foram estudadas por espectroscopia no infravermelho, análise termogravimétrica, microscopia eletrônica de varredura e microscopia de força atômica. Ensaios eletroquímicos mostraram que a capacidade específica de carga inicial do VXG (158 mA.h.g-1) melhora com a presença de CB[6] (168 mA.h.g-1), da HCB[6] (200 mA.h.g-1), e principalmente com CB[6]VO (230 mA.h.g-1), em filmes finos com baixa concentração dos macrociclos. Isto supera a capacidade de eletrodos de bateria comerciais. Nos intercalados com CB[6] a complexação dos íons Li+ com seus opérculos prejudica a reversibilidade na inserção/desinserção deste íon, diminuindo drasticamente a ciclabilidade de carga/descarga; a presença da HCB[6], que não complexa com o íon Li+, não sustenta a estrutura do VXG ao longo de vários ciclos, por não ser um macrociclo rígido. A presença de CB[6]VO parece estabilizar a estrutura do VXG oferencendo caminhos alternativos na difusão do íon Li+, que não complexa com os opérculos da CB obstruído pelo ion VO2+, aumentando a ciclabilidade, mantendo sua carga específica em aproximadamente 88% após 40 ciclos cronopotenciométricos. / Cucurbit[n]uril (CB[n]), hemi-cucurbit[6]uril (HCB[6]), and oxovanadium(IV)cucurbit[6]uril (CB[6]VO) vanadium pentoxide composites were prepared in several mole ratios by mechanically mixing the macrocycles and the V2O5 gel. Homogeneous mixtures were obtained for amounts as high as 10% in mol of CB[6] and HCB[6] and 1% of CB[6]VO. These macrocycles were intercalated in VXG interlamellar space as we could demonstrate with X-ray powder diffraction experiments (XRPD),which clearly show basal distance expansions and the formation of two crystallographic domains. The structural properties of such intercalates as well as their composition were studied with infrared spectroscopy, thermogravimmetric analysis, sweeping electron microscopy, and atomic force microscopy. Electrochemical experiments have shown that the initial specific charge capacity of VXG (158 mA.h.g1) was enhanced with the addition of CB[6] (168 mA.h.g1) and HCB[6] (200 mA.h.g1) and even more with (230 mA.h.g1) in thin films with low macrocycle amounts. These capacities exceed commercial batteries electrodes. Complexation of CB[6] with Li+ ions in CB[6]/VXG intercalates reduces considerably the reversibility of insertion/expulsion of this ion, reducing drastically its charge/discharge cyclability. The presence of HCB[6], who does not bind Li+ ions, is not rigid enough to sustain the oxide structure during many cycles. The presence of CB[6]VO seems to stabilize the VXG structure and offers alternative pathways for Li+ diffusion. It does not bind these ions since the occulli are occupied by VO2+ ions, enhancing cyclability. Its specific charge remains as high as 88% of the maximum charge capacity after 40 chronopotentiometric cycles.
3

Complexos de inclusão de antocianinas e análogos sintéticos de antocianinas / Inclusion complexes of anthocyanins and synthetic anthocyanin analogs

Silva, Cassio Pacheco da 16 October 2015 (has links)
As antocianinas compreendem o maior conjunto de pigmentos naturais do Reino Vegetal. São caracterizadas pelas colorações vermelha, roxa e azul de uma variedade de flores, frutas e folhas. A sua estabilidade é influenciada por diversos fatores como o pH local do meio, temperatura, luz ou copigmentos. A inclusão das antocianinas e análogos sintéticos, os sais de flavílio, dentro da cavidade da cucurbit[7]uril (CB[7]), sistema hóspede-hospedeiro, foi estudada a partir da espectroscopia de fluorescência. As antocianinas sintéticas utilizadas foram o cloreto de 7-hidroxi-4-metilflavílio (HMF) e o cloreto de 7-metoxi-4-metilflavílio (MMF) e as antocianinas naturais foram a cianindina-3-glicosídeo, cianidina-3,5-di-O-glicosídeo e antocianinas presentes no extrato do jambolão (Syzygium cumini). Os complexos de inclusão das antocianinas e os análogos sintéticos dentro da cavidade do CB[7] apresentaram uma estequiometria de inclusão do tipo 1:2, uma molécula hóspede e duas moléculas hospedeiras. A estequiometria de inclusão e as constantes de incorporação foram determinadas a partir de isotermas da inclusão pelo método de regressão não-linear. Para os íons flavílios, a determinação da estequiometria também foi comprovada pelo Método da Variação Contínua (MVC) ou método Job. A primeira constante de incorporação K11 obtida para as antocianinas e os íons flavílios foi da ordem de 105 - 106 M-1. Essa elevada constante de incorporação é devida à interação eletrostática entre as carbonilas do CB[7] e a carga positiva do anel pírilio das antocianinas. Entretanto, a segunda constante de incorporação, K12, apresenta um valor menor por causa da repulsão entre a primeira e a segunda molécula de CB[7]. A segunda constante de inclusão das antocianinas naturais apresentou um valor muito baixo em relação à segunda constante de incorporação do HMF e MMF. Essa diferença ocorreu pelo impedimento estérico provocado pelas unidades glicosídicas presentes nas antocianinas naturais. A hidratação das antocianinas do jambolão é uma reação muito rápida, ocorrendo em pH acima de 3,0. Quando o CB[7] foi adicionado às antocianinas em pH 4,62, a hidratação foi um pouco menor, mas mesmo assim a hidratação ocorreu. Após 24 horas, quando o equilíbrio das antocianinas do jambolão fosse deslocado na direção de formação das chalconas, o CB[7] foi adicionado ao meio, em elevadas concentrações. O equilíbrio de hidratação foi deslocado em direção ao cátion flavílio, indicando um aumento na estabilização desses compostos. / The anthocyanins, the largest group of natural plant pigments, are responsible for the red, purple and blue colors of a variety of flowers, fruit and leaves. Their stability is influenced by several factors, including the local pH of the medium, temperature, light and copigments. The inclusion of natural anthocyanins and their synthetic analogs, flavylium cations, in the cavity of cucurbit[7]uril, CB[7], to form host-guest complexes, was studied by fluorescence spectroscopy. The synthetic anthocyanin model compounds utilized were 7-hydroxy-4-methylalavylium (HMF) chloride and 7-methoxy-4-methylflavylium (MMF) chloride and the naturally-occurring anthocyanins were cyaniding-3-O-glucoside, cyaniding-3,5-di-O-glucoside and the anthocyanins extracted from jambolão (Syzygium cumini) fruit. The inclusion complexes of the anthocyanins and synthetic anthocyanin analogs with CB[7] presented a stoichiometry of 1:2, with one molecule of guest and two molecules of host. The stoichiometry of the inclusion and the incorporation equilibrium constants were determined from the binding isotherms by non-linear regression. For the synthetic flavylium ions, the stoichiometry was also verified using the method of continuous variations or Job plots. The first binding constant, K11, between the anthocyanins or flavylium ions and CB[7] was of the order of 105-106 M-1. This large equilibrium constant for incorporation reflects the electrostatic interaction between the carbonyl groups of CB[7] and the positive charge of the pyrilium ring of the anthocyanins. The binding constant for the second CB[7], K12, has a smaller value due to the repulsion between the first and second molecules of CB[7]. The second binding constant for the inclusion of the natural anthocyanins was much smaller than that of the synthetic anthocyanin analogs HMF and MMF. This difference was due to the steric hindrance afforded by the sugar residues present in the natural anthocyanins. The hydration of the anthocyanins of jambolão is very rapid above pH 3. When CB[7] was added to a mixture of jambolão anthocyanins at pH 4.62, the extent of hydration was diminished, but partial hydration did still occur. After equilibration at pH 4.62 for 24 hrs to form the chalcones, addition of high concentrations of CB[7] shifted the equilibrium back in the direction of the flavylium cation form of the anthocyanins, demonstrating the increase in the stabilization of this form upon host-guest complexation.
4

Complexos de inclusão de antocianinas e análogos sintéticos de antocianinas / Inclusion complexes of anthocyanins and synthetic anthocyanin analogs

Cassio Pacheco da Silva 16 October 2015 (has links)
As antocianinas compreendem o maior conjunto de pigmentos naturais do Reino Vegetal. São caracterizadas pelas colorações vermelha, roxa e azul de uma variedade de flores, frutas e folhas. A sua estabilidade é influenciada por diversos fatores como o pH local do meio, temperatura, luz ou copigmentos. A inclusão das antocianinas e análogos sintéticos, os sais de flavílio, dentro da cavidade da cucurbit[7]uril (CB[7]), sistema hóspede-hospedeiro, foi estudada a partir da espectroscopia de fluorescência. As antocianinas sintéticas utilizadas foram o cloreto de 7-hidroxi-4-metilflavílio (HMF) e o cloreto de 7-metoxi-4-metilflavílio (MMF) e as antocianinas naturais foram a cianindina-3-glicosídeo, cianidina-3,5-di-O-glicosídeo e antocianinas presentes no extrato do jambolão (Syzygium cumini). Os complexos de inclusão das antocianinas e os análogos sintéticos dentro da cavidade do CB[7] apresentaram uma estequiometria de inclusão do tipo 1:2, uma molécula hóspede e duas moléculas hospedeiras. A estequiometria de inclusão e as constantes de incorporação foram determinadas a partir de isotermas da inclusão pelo método de regressão não-linear. Para os íons flavílios, a determinação da estequiometria também foi comprovada pelo Método da Variação Contínua (MVC) ou método Job. A primeira constante de incorporação K11 obtida para as antocianinas e os íons flavílios foi da ordem de 105 - 106 M-1. Essa elevada constante de incorporação é devida à interação eletrostática entre as carbonilas do CB[7] e a carga positiva do anel pírilio das antocianinas. Entretanto, a segunda constante de incorporação, K12, apresenta um valor menor por causa da repulsão entre a primeira e a segunda molécula de CB[7]. A segunda constante de inclusão das antocianinas naturais apresentou um valor muito baixo em relação à segunda constante de incorporação do HMF e MMF. Essa diferença ocorreu pelo impedimento estérico provocado pelas unidades glicosídicas presentes nas antocianinas naturais. A hidratação das antocianinas do jambolão é uma reação muito rápida, ocorrendo em pH acima de 3,0. Quando o CB[7] foi adicionado às antocianinas em pH 4,62, a hidratação foi um pouco menor, mas mesmo assim a hidratação ocorreu. Após 24 horas, quando o equilíbrio das antocianinas do jambolão fosse deslocado na direção de formação das chalconas, o CB[7] foi adicionado ao meio, em elevadas concentrações. O equilíbrio de hidratação foi deslocado em direção ao cátion flavílio, indicando um aumento na estabilização desses compostos. / The anthocyanins, the largest group of natural plant pigments, are responsible for the red, purple and blue colors of a variety of flowers, fruit and leaves. Their stability is influenced by several factors, including the local pH of the medium, temperature, light and copigments. The inclusion of natural anthocyanins and their synthetic analogs, flavylium cations, in the cavity of cucurbit[7]uril, CB[7], to form host-guest complexes, was studied by fluorescence spectroscopy. The synthetic anthocyanin model compounds utilized were 7-hydroxy-4-methylalavylium (HMF) chloride and 7-methoxy-4-methylflavylium (MMF) chloride and the naturally-occurring anthocyanins were cyaniding-3-O-glucoside, cyaniding-3,5-di-O-glucoside and the anthocyanins extracted from jambolão (Syzygium cumini) fruit. The inclusion complexes of the anthocyanins and synthetic anthocyanin analogs with CB[7] presented a stoichiometry of 1:2, with one molecule of guest and two molecules of host. The stoichiometry of the inclusion and the incorporation equilibrium constants were determined from the binding isotherms by non-linear regression. For the synthetic flavylium ions, the stoichiometry was also verified using the method of continuous variations or Job plots. The first binding constant, K11, between the anthocyanins or flavylium ions and CB[7] was of the order of 105-106 M-1. This large equilibrium constant for incorporation reflects the electrostatic interaction between the carbonyl groups of CB[7] and the positive charge of the pyrilium ring of the anthocyanins. The binding constant for the second CB[7], K12, has a smaller value due to the repulsion between the first and second molecules of CB[7]. The second binding constant for the inclusion of the natural anthocyanins was much smaller than that of the synthetic anthocyanin analogs HMF and MMF. This difference was due to the steric hindrance afforded by the sugar residues present in the natural anthocyanins. The hydration of the anthocyanins of jambolão is very rapid above pH 3. When CB[7] was added to a mixture of jambolão anthocyanins at pH 4.62, the extent of hydration was diminished, but partial hydration did still occur. After equilibration at pH 4.62 for 24 hrs to form the chalcones, addition of high concentrations of CB[7] shifted the equilibrium back in the direction of the flavylium cation form of the anthocyanins, demonstrating the increase in the stabilization of this form upon host-guest complexation.

Page generated in 0.0364 seconds